Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T04:32:42.706Z Has data issue: false hasContentIssue false

Elastic Deformations during Phase Transition in Freestanding BaTiO3 Thin Films.

Published online by Cambridge University Press:  01 February 2011

Jaya P. Nair
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science Rehovot, 76100, Israel
Natalie Stavitski
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science Rehovot, 76100, Israel
Ilya Zon
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science Rehovot, 76100, Israel
Konstantin Gartsman
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science Rehovot, 76100, Israel
Igor Lubomirsky
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science Rehovot, 76100, Israel
Get access

Abstract

Elastic deformations during phase transition in freestanding BaTiO3 thin films were investigated. BaTiO3 films were prepared by sol-gel technique or RF magnetron sputtering on silicon substrates, covered by randomly oriented 120 nm thick Al2O3. The as-deposited films were under tensile stress of 100-170 MPa and did not show neither pyroelectric nor piezoelectric properties. Partial substrate removal caused the freestanding films to expand laterally by 0.3-0.5% and corrugate. Dielectric constant of the freestanding films (620±10) was found to be significantly higher than that of the substrate supported films (110±20). The freestanding films showed detectable piezoelectric effect, which indicated that the lateral expansion was originated from the substrate-suppressed cubic-tetragonal phase transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pertsev, N. A. and Koukhar, V. G., Phys. Rev. Lett. 84, 3722 (2000).Google Scholar
[2] Pertsev, N. A., Zembilgotov, A. G., and Tagantsev, A. K., Phys. Rev. Lett. 80, 1988 (1998).Google Scholar
[3] Koukhar, V. G., Pertsev, N. A., and Waser, R., Phys. Rev. B 64, 214103/1 (2001).Google Scholar
[4] Bratkovsky, A. M. and Levanyuk, A. P., Phys. Rev. B 64, 134107/1 (2001).Google Scholar
[5] Roytburd, A. L., Alpay, S. P., Bendersky, L. A., Nagarajan, V., and Ramesh, R., J. Appl. Phys. 89, 553 (2001).Google Scholar
[6] Pamir, S. Alpay and Roytburd, A. L., J. Appl. Phys. 83, 4714 (1998).Google Scholar
[7] Li, S., Eastman, J. A., Li, Z., Foster, C. M., Newnham, R. E., and Cross, L. E., Phys. Lett. A 212, 341 (1996).Google Scholar
[8] Shaoping, L., Eastman, J. A., Vetrone, J. M., Foster, C. M., Newnham, R. E., and Cross, L. E., Jpn. J. Appl. Phys. 1. 36, 5169 (1997).Google Scholar
[9] Frey, M. H. and Payne, D. A., Appl. Phys. Lett. 63, 2753 (1993).Google Scholar
[10] Bihari, B., Kumar, J., Stauf, G. T., Buskirk, P. C. Van, and Seong, H. Cheol, J. Appl. Phys. 76, 1169 (1994).Google Scholar
[11] Yu, A. Boikov and Claeson, T., J. Appl. Phys. 89, 5053 (2001).Google Scholar
[12] Streiffer, S. K., Basceri, C., Parker, C. B., Lash, S. E., and Kingon, A. I., J. Appl. Phys. 86, 4565 (1999).Google Scholar
[13] Shaw, T. M., Suo, Z., Huang, M., Liniger, E., Laibowitz, R. B., and Baniecki, J. D., Appl. Phys. Lett. 75, 2129 (1999).Google Scholar
[14] Jun, S., Sung, K. Young, Lee, J., and Woon, K. Young, Appl. Phys. Lett. 78, 2542 (2001).Google Scholar
[15] Romanov, A. E., Pompe, W., and Speck, J. S., J. Appl. Phys. 79, 4037 (1996).Google Scholar
[16] Desu, S. B., J. Elecrochem. Soc. 140, 2981 (1993).Google Scholar
[17] Ray, J. and Hing, P., J. Appl. Phys. 88, 1008 (2000).Google Scholar
[18] Kuwabara, M., Takahashi, S., and Kuroda, T., Appl. Phys. Lett. 62, 3372 (1993).Google Scholar
[19] Lubomirsky, I., Chang, D. T., and Stafsudd, O. M., J. Appl. Phys. 85, 6690 (1999).Google Scholar
[20] Dazzi, A., Gueldry, A., Maglione, M., Sibillot, P., Mathey, P., and Jullien, P., Europ. Phys. J. Appl. Phys. 9, 181 (2000).Google Scholar
[21] Nam-Yang, L., Sekine, T., Ito, Y., and Uchino, K., Jpn. J. Appl. Phys. 1. 33, 1484 (1994).Google Scholar
[22] Cheng-Chung, L., Jin-Cherng, H., and Daw-Heng, W., Appl. Surface Sci. 171, 151 (2001).Google Scholar
[23] Stoney, G. G., Proc. R. Soc. London A82, 172 (1909).Google Scholar
[24] Kovacs, G. T. A., Micromachined Transducers Sourcebook, 1 ed. (WCB &McGraw Hill, NY, 1999).Google Scholar
[25] Pertsev, N. A., Zembilgotov, A. G., Hoffmann, S., Waser, R., and Tagantsev, A. K., J. Appl. Phys. 85, 1698 (1999).Google Scholar