Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T11:57:03.631Z Has data issue: false hasContentIssue false

Electric Field Effects on the Optical Properties of InxGa1-xAs/GaAs Strained Quantum Wells and Superlattices

Published online by Cambridge University Press:  28 February 2011

K. Gibb
Affiliation:
National Research Council, 100 Sussex Drive, Ottawa, Canada Université d’Ottawa, Ottawa, Canada
C. Lacelle
Affiliation:
National Research Council, 100 Sussex Drive, Ottawa, Canada
A.P. Roth
Affiliation:
National Research Council, 100 Sussex Drive, Ottawa, Canada Université d’Ottawa, Ottawa, Canada
B. Soucail
Affiliation:
Ecole Normale Supérieure, 24 Rue Lhomond, Paris, France
N. Dupuis
Affiliation:
Ecole Normale Supérieure, 24 Rue Lhomond, Paris, France
P. Voisin
Affiliation:
Ecole Normale Supérieure, 24 Rue Lhomond, Paris, France
B.Y. Hua
Affiliation:
Beijing Polytechnic University, Beijing, China Université d’Ottawa, Ottawa, Canada
E. Fortin
Affiliation:
Université d’Ottawa, Ottawa, Canada
Get access

Abstract

We have used photoluminescence excitation and photocurrent spectroscopy to investigate the electronic properties of InxGa1-xAs/GaAs strained layer quantum wells and superlattices. In quantum wells, sharp excitonic transitions between discrete energy levels are observed both in excitation and near flatband photocurrent spectra whereas superlattices show heavy-hole to conduction miniband transitions at the Brillouin mini-zone centre and edge, directly giving the electron miniband width. Applying a longitudinal electric field to the quantum wells produces a red shift of the excitons due to the quantum confined Stark effect, while in superlattices, photocurrent spectra at finite applied electric fields show for the first time in this system, the effects of Wannier-Stark quantization. The analysis of the spectra provides a precise determination of the band offset.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hua, B.Y., Fortin, E., Roth, A.P. and Masut, R.A., Appl. Phys. Lett. 53, 1062 (1988).Google Scholar
2Fortin, E., Hua, B.Y. and Roth, A.P., Phys. Rev. B39, 10887 (1989).Google Scholar
3Yu, P.W., Sanders, G.D., Evans, K.R., Reynolds, D.C., Bajaj, K.K, Stuz, C. E. and Jones, R.L., Appl. Phys. Lett. 54, 2230 (1989).Google Scholar
4Bleuse, J., Bastard, G. and Voisin, P., Phys. Rev. Lett. 60, 220 (1988).Google Scholar
5Mendez, E.E., Agullo-Rueda, F. and Hong, J.M., Phys. Rev. Lett. 60, 2426 (1988).Google Scholar
6Voisin, P., Bleuse, J., Bouche, C., Gaillard, S., Alibert, C. and Regreny, A., Phys. Rev. Lett. 61, 1639 (1988).Google Scholar
7Bleuse, J., Voisin, P., Avollon, M. and Quillec, M., Appl. Phys. Lett. 53, 2632 (1988).Google Scholar
8Agullo-Rueda, F., Mendez, E.E. and Hong, J.M., Phys. Rev. B40, 1357 (1989).Google Scholar
9Soucail, B., Dupuis, N., Fereira, R., Voisin, P., Roth, A.P., Morris, D., Gibb, K. and Lacelle, C., To be publishedGoogle Scholar
10Trzeciakowski, W. and Roth, A.P., Superlat. and Microstruct. 6, 315 (1989).Google Scholar
11Priester, C., Allan, G. and Lannoo, M., Phys. Rev. B38, 13451 (1988).Google Scholar
12Miller, D.A.B., Chelma, D.S., Damen, T.C., Wiegmann, A.C., Wood, T.H. and Burrus, C.A., Phys. Rev. B32, 1043 (1985).Google Scholar
13Yu, P.W., Sanders, G.D., Evans, K.R., Reynolds, D.C., Bajaj, K.K. and Jones, R.L, Phys. Rev. B38, 7796 (1988).Google Scholar