Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T10:32:53.817Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of Amorphous Si1-xSnx: H Structures

Published online by Cambridge University Press:  26 February 2011

D. Girginoudi
Affiliation:
Laboratory of Electrotechnical and Electronic Materials Technology, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
A. Thanailakis
Affiliation:
Laboratory of Electrotechnical and Electronic Materials Technology, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
A. Christou
Affiliation:
Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, DC 20375–5000
Get access

Abstract

Amorphous hydrogenated silicon-tin films (α — Six Snx:H) have been prepared by co-electron beam and Knudsen cell deposition. It is shown that the dependence of Eg on x, over the entire range of 0 < x < 0.51 studied, cannot be described by a single linear relationship. The d.c. conductivity measurements indicate two distinct conduction regions as a function of x. The addition of Sn up to x = 0.10 creates a high density of dangling bonds and moves the band edges so a significant conductivity increase is observed. The bonding between Si and H is preferred to Sn and H. Sn-H bonds were observed only for x > 0.40. Photoluminescence measurements show that band edge luminescence dominates at 1.3–1.4 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Girginoudi, D., Thanailakis, A., Hatsopoulos, Z., A. Christou to be published. (1986).Google Scholar
2. Verie, C., Rochette, J.F. and Rebouillat, J.P., J. de Physique, Collogue C4, Supplement no. 10, TME 42, (1981).Google Scholar
3. Vergnat, M., Piecuch, M., Marchai, G. and Gerl, M., Phil. Mag. B. 51, No. 3, 327 (1985).CrossRefGoogle Scholar
4. Itozaki, H., Fujita, N., Igarashi, T. and Hitotsuanagi, H., J.Non-cryst. Solids, 59, 60, 589 (1983).CrossRefGoogle Scholar
5. Shufflebotham, P.K., Thanailakis, A. and Card, H.C., “A review of amorphous silicon alloys: Fabrication, Properties and Applications,” submitted for publication to J. Non-cryst. Solids (1986).Google Scholar
6. Christou, A., Tzanetakis, P., Hatzopoulos, Z. and Kyriakidis, G., Appl. Phys. Lett. 48 (6), 408 (1986).Google Scholar
7. von Roedern, B., Mahan, A.H., Konenkemp, R., Williamson, D.L., Sanchez, A., and Madan, A., J. Non-Cryst. Solids 66, 13 (1984).Google Scholar
8. Kuwano, Y., Ohnichi, M., Nishiwaki, H. et. al. Proceedings 16th IEEE PV Specialist Conf, San Diego, 1338 (1982).Google Scholar
9. Williamson, D.L. and Deb, S.K., J. Appl. Phys. 54, 2588 (1983).CrossRefGoogle Scholar
10. Chen, G., Zhang, F., Zhang, N. and Ae, D., Solar Energy Materials, 12, 471 (1985).Google Scholar
11. Williamson, D.L., Kerns, R.C., and Deb, S.K., J. Appl. Phys. 55 (8), 2816 (1984).CrossRefGoogle Scholar
12. Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials, Second ed. (Oxford: Clarendon Press) p. 289 (1979).Google Scholar
13. Catherine, M. and Turban, G., Thin Solid Films 60, 193 (1979).Google Scholar
14. Sussman, R.S. and Ogden, R., Phil. Mag. B44, 137 (1981).Google Scholar
15. Spear, W.E. and LeComber, P.G., Solid State Commun. 17, 1193 (1975).Google Scholar
16. Lewis, A., Solid State Commun. 13, 547 (1973).CrossRefGoogle Scholar
17. Knights, J.C. and Lucovsky, G., CRC Crit. Rev. Solid State Mater. Sci. 9, 211 (1980).CrossRefGoogle Scholar
18. Paul, W., Paul, D.K., Roedern, B., Blake, J. and Oguz, S., Phys. Rev. Lett. 46, 1016 (1981).Google Scholar
19. Tsang, C. and Street, R.A., Phil. Mag. B37, 601 (1978).Google Scholar
20. Sussmann, R.S. and Ogden, R., Phil. Mag. B46, 137 (1981).Google Scholar