Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T16:21:02.896Z Has data issue: false hasContentIssue false

The Electrical and Optical Properties of Amorphous Silicon Alloys by Plasma-Enhanced CVD Method

Published online by Cambridge University Press:  21 February 2011

G. H. Lin
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
M. Kapur
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
J. O'M. Bockris
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
Get access

Abstract

High and low bandgap amorphous silicon thin film alloys (a-Si:Al, a-Si:Se, a-Si:S, and a-Si:Ga) were prepared by plasma-enhanced chemical vapor deposition. It was found that Al and Ga amorphous silicon alloys are low bandgap materials whereas a:SiS and a:SiSe are high bandgap semiconductors. The optical band gap of these systems could be changed from 1.0 eV to 2.0 eV, depending on the alloying element and its concentration in the film. The dark to light conductivity ratio was measured. The elemental content and distribution was analyzed by the SIMS and EPMA techniques. The results show that some of the amorphous silicon alloys studied are promising materials for multi-bandgap photovoltaic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ogden, J. M. and Williams, R. H., Report at Priceton University Center for Energy and Environmental Study, 231, February, 1989.Google Scholar
2. Lin, G. H., Kapur, M., Kainthla, R. C., and Bockris, J. O'M., Appl. Phys. Lett., 55, 386 (1989).Google Scholar
3. Chevallier, J., Wieder, H., Onton, A., and Guarnieri, C. R., Sol. St. Commun., 24, 867 (1977).Google Scholar
4. Mackenzie, K. D., Eggert, J. R., Leopold, D. J., Li, Y. M., Lin, S., and Paul, W., Phys. Rev. B, 31, 2198 (1985).Google Scholar
5. Anderson, D. A. and Spear, W. E., Phil. Mag., 35, 1 (1977).Google Scholar
6. Tyczkowski, J., Thin Solid Films, 168, 175 (1989).Google Scholar
7. Verie, C., Rochette, J. F. and Rebouillat, J. P., J. de Phys. Coll. C4, 42, Supp. 10, 667 (1981).Google Scholar
8. Girginoudi, D., Georgoulas, N., and Thanailakis, A., J. Appl. Phys., 66, 354 (1989).Google Scholar
9. Shufflebotham, P. K., Card, H. C., and Thanailakis, A., J. Non. Cryt Solids, 92, 183 (1987).Google Scholar
10. Wakim, F. G., Al-Jassar, A., and Abo-Namous, S. A., J. Non-Cryst. Solid, 53, 11 (1982).Google Scholar
11. Shufflebotham, P. K., Card, H. C., Kao, K. C., and Thanailakis, A., J. Appl. Phys., 60, 2036 (1986).Google Scholar
12. Ovshinsky, S. R. and Adler, D., Mater. Res. Soc. Spring Meeting, San Francisco (1985).Google Scholar
13. Morimoto, A., Miura, T., Kumeda, M., and Shimizu, T., Jpn. J. Appl. Phys., 20, L833 (1981).Google Scholar
14. Ovshinsky, S. R., in Physical Properties of Amorphous Materials, edited by Adler, D., Schwartz, B. B., and Steele, M. C., Plenum Press, New York, p.105 (1985).Google Scholar
15. Shimada, T., Katayama, Y., and Komatsubara, K. F., J. Appl. Phys., 50, 5530 (1979).Google Scholar