Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T20:30:01.286Z Has data issue: false hasContentIssue false

Electrical Communication Between Glucose Oxidase and Different Ferrocenylalkanethiol Chain Lengths

Published online by Cambridge University Press:  10 February 2011

Shai Rubin
Affiliation:
Electronics and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545
Georg Bar
Affiliation:
Electronics and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545
Russell W. Cutts
Affiliation:
Electronics and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545
Jimmy T. Chow
Affiliation:
Department of Chemistry, University of Texas/Dallas, Richardson, TX
John P. Ferraris
Affiliation:
Department of Chemistry, University of Texas/Dallas, Richardson, TX
Thomas A. Zawodzinski Jr.
Affiliation:
Electronics and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We describe the factors affecting the electron transfer process between the different components of a self-assembled mixed monolayer. The system is comprised of mixed monolayers containing aminoalkanethiols (AMATs) and ferrocenylalkanethiols (FATs) of variable chain lengths. We study the effects of different ratio of the two mixed monolayer components on the permeability of the monolayer towards a Ru(NH3)6C13 redox probe. In order to study the electrical communication between the enzyme and the mediator molecules, the enzyme glucose oxidase (GOx) was attached to the AMAT sites to create a biosensor device. The relative efficiency of a biosensor of each chain-length combination of FAT and AMAT was examined. In light of this comparison, we consider the critical factors for efficient electron transfer between the ferrocene mediator and the GOx redox active site immobilized as part of the surface-confined system. We find that the biosensor response is greatest when the enzyme and the FATs are attached to the surface with different alkane chain lengths. We also find strong evidence for the existence of domains of FAT and AMAT in the mixed monolayer system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Sellers, H.; Ulman, A.; Shnidman, Y.; Eilers, J.E. J. Am. Chem. Soc. 1993, 115, 9389.(b) Dubios, L.H.; Nuzzo, R.G. Annu. Rev. Phys. Chem. 1992, 43, 437.Google Scholar
2. Chidsey, C.E.D. Science 1991, 251, 919.Google Scholar
3. (a) Poirier, G.E.; Tarlov, M.J. Langmuir 1994, 10, 2853. (b) Delamarche, E.; Michel, B.; Gerber, Ch.; Anselmetti, D.; Guntherodt, H.-J.; Wolf, H.; Ringsdorf, H. Langmuir 1994, 10, 2869. (c) Widring, C.A.; Smith, E.L; Porter, M.D. J. Am. Chem. Soc. 1991, 113, 2805. (d) Alves, C.A.; Smith, E.L.; Porter, M.D. J. Am. Chem. Soc. 1992, 114, 1222.Google Scholar
4. (a) Shimaza, K.; Ye, S.; Sato, Y.; Uosaki, K. J. Electroanal. Chem. 1994, 375, 409. (b) Walezak, M.M; Chung, C.; Stole, S.M.; Cindra, A.; Porter, M.D. J. Am. Chem. Soc. 1991, 113, 2370. (c) Wolf, M.O; Fox, M.A. J. Am. Chem. Soc. 1995, 117, 1845. (d) Crooks, R.M; Xu, C.; Sun, L.; Hill, S.L.; Ricco, A.J. Spectros. 1993, 8, 28. (e) Xu, C.; Sun, L.; Kepley, L.J.; Crooks, R.M; Ricco, A.J. Anal. Chem. 1993, 65, 2102.Google Scholar
5. (a) Whitesides, G. M.; Laibinis Langmuir 1990, 6, 87 (b) Ferguson, G.M.; Chaudhury, M.K.; Biebuyck, H.A.; Whitesides, G. M. Macromolecules 1993, 26, 5870. (c) Lee, T.R., Carey, R.I, Biebuych, H.A; Whitesides, G.M. Langmuir 1994, 10, 741.Google Scholar
6. (a) Nuzzo, R.G.; Fusco, F.A; Allara, D.L J. Am. Chem. Soc. 1987, 109, 2358. (b) Laibinis, P.E.; Whitesides, G.M; Allara, D.L.; Tao, Y.-T; Parikh, A.N.; Nuzzo, R.G. J. Am. Chem. Soc. 1991, 113, 7152. (c) Creager S.E.; Collard, D.M.; Fox, M.A. Langmuir 1990, 6, 1617.Google Scholar
7. Guo, L.-H.; Facci, J.S; Mclendon, G.; Mosher, R Langmuir 1994, 10, 4588.Google Scholar
8. (a) Rowe, G.K.; Creager, S.E. Langmuir 1991, 7, 2307. (b) Rowe, G. K; Creager, S. E. J. Phys. Chem. 1994, 98, 5500. (c) Creager, S. E.; Rowe, G. K. Anal. Chim. Acta 1991, 246, 233. (d) Creager, S. E.; Rowe, G. K. Langmuir 1993, 9, 2330.Google Scholar
9. Zhang, L.; Godinez, L.A.; Lu, T.; Gokel, G.W.; Kaifer, A.E. Angew. Chem. Int. Ed. Engl. 1995, 34, 235.Google Scholar
10. Rubin, S.; Chow, J.T; Ferraris, J.P.; Zawodzinski, T.A.Jr. Langmiur, in press.Google Scholar
11. Woods, R. Electroanalytical Chemistry, Vol 9; Bard, A. J. ed.; Marcel Dekker, Inc.; New York and Basel, 1976; p 119.Google Scholar
12. Chailapakul, O.; Crooks, R. C. Langmuir 1993, 9, 884. Sun, S.; Crooks, R. C. Langmuir 1993, 9, 1951. Chidsey, C. E. D.; Loiacono, D. N. Langmuir 1990, 6, 682. Bilewicz, R.; Majda, M. Langmuir 1991, 7, 1951. Ross, C. B.; Sun, S.; Crooks, R. C. Langmuir 1993,9, 632. Zhang, L.; Lu, T.; Gokel, G. W.; Kaifer, A. E. Langmuir 1993, 9, 786.Google Scholar
13. Heller, A. J. Phys. Chem, 1992, 96, 3579. Degani, Y.; Heller, A. J. Phys. Chem. 1987, 91, 1285. Schumann, W.; Ohara, T. J.; Schmidt, H.-L.; Heller, A. J. Am. Chem. Soc. 1991, 113, 1394. Degani, Y.; Heller, A. J. Am. Chem. Soc. 1988, 110, 2615.Google Scholar
14. Willner, I.; Riklin, A.; Blonder, R.; Katz, E. manuscript in preparation.Google Scholar