Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T23:19:50.031Z Has data issue: false hasContentIssue false

Electrical Conductivity Relaxation Study of Solid Oxide Fuel Cell Cathodes using Epitaxial (001)-Oriented Strontium-Doped Lanthanum Manganite Thin Films

Published online by Cambridge University Press:  01 February 2011

Lu Yan
Affiliation:
luyan@andrew.cmu.edu, Carnegie Mellon University, Materials Sci and Eng, Pittsburgh, Pennsylvania, United States
Balasubramaniam Kavaipatti
Affiliation:
bk@andrew.cmu.edu, Carnegie Mellon University, Materials Sci and Eng, Pittsburgh, Pennsylvania, United States
Shanling Wang
Affiliation:
shanling@andrew.cmu.edu, Carnegie Mellon University, Materials Sci and Eng, Pittsburgh, Pennsylvania, United States
Hui Du
Affiliation:
hdu@andrew.cmu.edu, Carnegie Mellon University, Materials Sci and Eng, Pittsburgh, Pennsylvania, United States
Paul Salvador
Affiliation:
paul7@andrew.cmu.edu, Carnegie Mellon University, Materials Sci and Eng, Pittsburgh, Pennsylvania, United States
Get access

Abstract

Epitaxial single-crystal films of La0.7Sr0.3MnO3 (100) having smooth surface morphology were deposited on SrTiO3 (100) substrates by pulsed laser deposition (PLD). Electrical conductivity relaxation (ECR) measurements were carried out at elevated temperatures over a range of absolute oxygen pressures to determine the oxygen surface exchange coefficient. Steady-state conductivity data of the thin films show good agreement with the bulk material's properties. The values of the oxygen exchange coefficients (Kchem) are found to be similar for both oxidation and reduction process between 50 and 500 mTorr O2. The activation energy (Ea) of Kchem is 1.00±0.27 eV at temperatures above 600 °C and Kchem (T=612°C)≈1.2×10-6 cm/s.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Minh, N. Q., Science and Technology of Ceramic Fuel Cells Cells. (Elsevier Science, 1995).Google Scholar
2 Guindet, A. H. a. J., in The CRC Handbook of Solid State Electrochemistry (CRC Press, 1997), pp. 407.Google Scholar
3 Maier, J., Physical Chemistry of Ionic Materials Ions and Electrons in Solids Solids. (John Wiley & Sons, 2004).Google Scholar
4 Baumann, F. S., Maier, J. and Fleig, J., Solid State Ionics 179 (21–26), 1198 (2008).Google Scholar
5 Fleig, J., Baumann, F. S., Brichzin, V., Kim, H. R., Jamnik, J., Cristiani, G., Habermeier, H. U. and Maier, J., Fuel Cells 6 (3–4), 284 (2006).Google Scholar
6 Wilson, J. R., Kobsiriphat, W., Mendoza, R., Chen, H. H.-Y., Hiller, J. M., Miller, D D. J., Thornton, K., Voorhees, P. W., Adler, S. B. and Barnett, S. A., Nat Mater 5 (7), 541 (2006).Google Scholar
7 B., K. K. -C. I. Chang; Balasubramaniam, K. R.; Yildiz, B.; Hennessy, D.; Salvador, P. A.; Leyarovska, N.; You, H., Mat. Res. Soc. Symp. Proc 1126 (2009).Google Scholar
8 Katsiev, K., Yildiz, B., Balasubramaniam, K. and Salvador, P. A., Applied Physics Letters 95 (9), 092106 (2009).Google Scholar
9 Kim, G., Wang, S., Jacobson, A. J. and Chen, C. L., Solid State Ionics 177 (17–18), 1461 (2006).Google Scholar
10 Wang, S., Heide, P. A. W. van der, Chavez, C., Jacobson, A. J. and Adler, S. B., Solid State Ionics 156 (1–2), 201 (2003).Google Scholar
11 tenElshof, J. E., Lankhorst, M. H. R. and Bouwmeester, H. J. M., Journal of the Electrochemical Society 144 (3), 1060 (1997).Google Scholar
12 Wang, S., Verma, A., Yang, Y. L., Jacobson, A. J. and Abeles, B B., Solid State Ionics. 140 (1–2), 125 (2001).Google Scholar
13 Chen, X., Wang, S., Yang, Y. L., Smith, L., Wu, N. J., Kim, B. I., Perry, S. S., Jacobson, A. J. and Ignatiev, A., Solid State Ionics 146 (3–4), 405 (2002).Google Scholar
14 Balasubramaniam, K. R., Cao, Y., Patel, N., Havelia, S. Have, Cox, P. J., Devlin, E. C., Yu, E. P., Close, B. J., Woodward, P. M. and Salvador, P. A., Journal of Solid State Chemistry 181 (4), 705 (2008).Google Scholar
15 Pauw, L. J. v. d., Philips Research Reports 13, 1 (1958).Google Scholar
16 Chen, X., Wang, S., Yang, Y. L., Smith, L., Wu, N. J., Kim S. S. P., B. B.-I. Jacobson, A. J. and Ignatiev, A., Solid Sates Ionics 146, 405 (2002).Google Scholar
17 Chen, L., Chen, C. L. and Jacobson, A. J., Ieee Transactions on Applied Superconductivity 13 (2), 2882 (2003).Google Scholar
18 Liang, Y. C. and Liang, Y. C., Journal of Crystal Gro Growth wth 304 (1), 275 (2007).Google Scholar
19 Wu, W. B., Wong, K. H. and Choy, C. L., Journal of Physics D D-Applied Physics 32 (15), L57 (1999).Google Scholar
20 Anderson, H. U., Solid State Ionics 52 (1–3), 33 (1992).Google Scholar
21 Kim, S., Wang, S., Chen, X., Yang, Y. L., Wu, N., Ignatiev, A., Jacobson, A. J. Jaco and Abeles, B., Journal of The Electrochemical Society 147 (6), 2398 (2000).Google Scholar
22 Rekas, M., Bak, T., Nowotny, J., Sorrell, C. C., Zhao, Y., Foger, K. and Vance, E. R., Journal of Materials Science Science-Materials in Electronics 11 (9), 697 (2000).Google Scholar
23 Otter, M. W. den Ott, Bouwmeester, H. J. M., Boukamp, B. A. and Verweij, H., Journal of the er, Electrochemical Society 148 (2), J1 (2001).Google Scholar
24 Kan, C. C., Kan, H. H., Assche, F. M. Van, Armstrong, E. N. and Wachsman, E. D., Journal of the Electrochemical Society 155 (10), B985 (2008).Google Scholar
25 Souza, R. A. De, Kilner, J. A. and Walker, J. F., Materials Letters 43 (1–2), 43 (2000).Google Scholar
26 Yasuda, I. and Hishinuma, M., Journal of Solid State Chemistry 123 (2), 382 (1996).Google Scholar