Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:33:36.290Z Has data issue: false hasContentIssue false

Electrodes for Functional Neuralmuscular Stimulation

Published online by Cambridge University Press:  26 February 2011

Y. S. Lee
Affiliation:
Center for Electronic and Electro-optic Materials, Electrical Engineering, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260
W. A. Anderson
Affiliation:
Center for Electronic and Electro-optic Materials, Electrical Engineering, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260
F. C. Mendel
Affiliation:
Center for Electronic and Electro-optic Materials, Electrical Engineering, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260
D. R. Fish
Affiliation:
Center for Electronic and Electro-optic Materials, Electrical Engineering, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260
L. M. Anderson
Affiliation:
Center for Electronic and Electro-optic Materials, Electrical Engineering, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260
Get access

Abstract

Electrodes for FNS were fabricated by photolithographic techniques from foils of Mo, Ta, and stainless steel with lateral dimensions of 1–3 mm and thickness of about 50 μm. More recent designs have utilized a Si carrier with either a Pt or diffused Si track terminated by Au electrodes. Biocompatibility studies conducted on frogs and rabbits indicate good stability of electrodes coated with SiO by plasma deposition. Carriers did not move after implantation and did not show signs of corrosion. The diffused Si design is now preferred since electrode tracks are sub-surface, tracks may be electrically and biologically insulated by SiO2, all fabrication steps are compatible with standard integrated circuit processing such that electronics may be integrated on the carrier with the electrode tracks, and small dimensions are easily attained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peckham, P.H. and Mortimer, J.T., Functional Electrical Stimulation: Applications in Neural Prostheses, edited by Hambrecht, F.T. and Reswick, J.B., pp. 8395, 1977.Google Scholar
2. Glaser, R.M., et al., Locomotion via Paralyzed Leg Muscles: Feasibility Study for a Leg-Propelled Vehicle, J. Rehab. 20, 87 (1983).Google ScholarPubMed
3. Petrofsky, J.S., Heaton, H.H. and Phillips, C.A., J. Biomed. Engr. 5, 292 (1983).CrossRefGoogle Scholar
4. Bajd, T., Kralj, A., and Turk, R., J. Biometh, 15 (1), 1 (1982).Google Scholar
5. Bajd, T., Kralj, A., Turk, R., et al., Phys. Ther. 63, 1116 (1983).Google Scholar
6. Thoma, H., Frey, M., Gruber, H., et al., Trans. Am. Soc. Artif. Intern. Organs. 29, 301 (1983).Google Scholar
7. Hudlicka, O., Brown, M., Otter, M., et al., Pfluegers Arch. 369, 141 (1976).CrossRefGoogle Scholar
8. Benton, L.A., Baker, L.L., Bowman, B.R., Waters, R.L., Functional Electrical Stimulation - A Practical Clinical Guide, Rancho Los Amigos Rehab. Engin. Center, C.A. Downey, pp. 1133, 1980.Google Scholar
9. Caldwell, C.W. and Reswick, J.B.T., IEEE Trans. Biomed. Eng., 22, 429 (1975).CrossRefGoogle Scholar
10. Winter, A., Weierman, R.J. and Laing, J., J. Med. Soc. N.J., 80 (2), 121 (1983).Google Scholar
11. Glenn, W.W.L., Hogan, J.F., Loke, J.S.O., Ciesielski, T.E., et al., N. Engl. J. Med., 310 (18), 1150 (1984).CrossRefGoogle Scholar
12. Godec, C.J. and Cass, A.S., J. Urol. 123 (5), 722 (1980).CrossRefGoogle Scholar
13. Gould, N., Donnermeyer, D., Pope, M. and Ashikaga, T., Clin. Orthop. 164, 215 (1982).CrossRefGoogle Scholar
14. Black, R.C., Clark, G.M., Tong, Y.C. and Patrick, J.F., Ann. N.Y. Acad. Sci., 405, 137 (1983).CrossRefGoogle Scholar
15. Blamey, P.J., Dowell, R.C., Tong, Y.C., and Clark, G.M., J. Acoust. Soc. Am. 76 (1), 97 (1984).CrossRefGoogle Scholar
16. Brindley, G.S., Polkey, E.G., Rushton, D.N., Paraplegia, 16, 428 (19781979).Google Scholar
17. Baier, R.E., Meyer, A.E., Natiella, J.R., Natiella, R.R., Carter, J.M., J. Biomed. Mater. Res., 18, 337 (1984).CrossRefGoogle Scholar
18. Miller, J.A., Science News, 129, 408 (1986).CrossRefGoogle Scholar
19. Mercer, H.D. and White, R.L., IEEE Trans. on Biomed. Engr. BME–25, 494 (1978).CrossRefGoogle Scholar
20. Edell, P.J., Churchill, J.N. and Gourley, I.M., Biomat. Med. Rev. Art. Org. 10, 103 (1982).Google Scholar
21. Bain, L.J., MRS Bulletin, 23, July/August (1986).CrossRefGoogle Scholar
22. Najafi, K., Wise, K.D. and Mochizuki, T., IEEE Trans. on Elec. Rev. ED–32, 1206 (1985).CrossRefGoogle Scholar