Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T01:52:04.922Z Has data issue: false hasContentIssue false

Electroless Synthesis of 1.4 nm Pd and Pt Nanoparticles on Self-Assembled Rosette Nanotubes

Published online by Cambridge University Press:  28 January 2011

Rahul Chhabra
Affiliation:
National Institute for Nanotechnology, Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2M9 Canada
Hicham Fenniri
Affiliation:
National Institute for Nanotechnology, Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2M9 Canada
Get access

Abstract

Electroless synthesis and hierarchical organization of 1.4 nm Pd and Pt nanoparticles (NPs) on self-assembled Rosette Nanotubes (RNTs) is described. The nucleated NPs are nearly monodisperse and reveal supramolecular organizations guided by RNT templates. Interestingly, the narrow size distribution is attributable to unique templating behavior of RNTs. The resulting metal NP-RNT composites were characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). X-ray Photoelectron Spectroscopy (XPS) was also performed to confirm the nature and composition of RNT-templated NPs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Daniel, M.-C. and Astruc, D., Chem. Rev. 104 (1), 293 (2004).Google Scholar
2. Burda, C., Chen, X., Narayanan, R. and El-Sayed, M. A., Chem. Rev. 105 (4), 1025 (2005).Google Scholar
3. Pileni, M. P., J. Phys. Chem. C 111 (26), 9019 (2007).Google Scholar
4. Suzuki, K., Sato, S. and Fujita, M., Nature Chem. 2, 25 (2010).Google Scholar
5. Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y. and Yan, H., Science 323, 112 (2009).Google Scholar
6. Dickerson, M. B., Sandhage, K. H. and Naik, R. R., Chem. Rev. 108 (11), 4935 (2008).Google Scholar
7. Kumara, M. T., Tripp, B. C. and Muralidharan, S., Chem. Mater. 19 (8), 2056 (2007).Google Scholar
8. Douglas, T., Strable, E., Willits, D., Aitouchen, A., Libera, M. and Young, M., Adv. Mater. 14 (6), 415 (2002).Google Scholar
9. Chen, C.-L. and Rosi, N. L., J. Am. Chem. Soc. 132 (20), 6902 (2010).Google Scholar
10. Fenniri, H., Mathivanan, P., Vidale, K. L., Sherman, D. M., Hallenga, K., Wood, K. V. and Stowell, J. G., J. Am. Chem. Soc. 123 (16), 3854 (2001).Google Scholar
11. Moralez, J. G., Raez, J., Yamazaki, T., Motkuri, R. K., Kovalenko, A. and Fenniri, H., J. Am. Chem. Soc. 127 (23), 8307 (2005).Google Scholar
12. Humphrey, W., Dalke, A. and Schulten, K., J. Mol. Graph. 14, 33 (1996).Google Scholar
13. Chhabra, R., Moralez, J. G., Raez, J., Yamazaki, T., Cho, J.-Y., Myles, A. J., Kovalenko, A. and Fenniri, H., J. Am. Chem. Soc. 132 (1), 32 (2010).Google Scholar
14. Hegde, M. S., Madras, G. and Patil, K. C., Acc. Chem. Res. 42 (6), 704 (2009).Google Scholar
15. Dressick, W. J., Kondracki, L. M., Chen, M.-S., Brandow, S. L., Matijević, E. and Calvert, J. M., Colloids and Surfaces A 108 (1), 101 (1996).Google Scholar