Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-13T04:21:06.182Z Has data issue: false hasContentIssue false

Electronic Structure and Transport Properties of CoSb3: A Narrow Band-Gap Semiconductor

Published online by Cambridge University Press:  10 February 2011

J. O. Sofo
Affiliation:
Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica, (8400) Bariloche RN, Argentina, sofotrcab.cnea.edu.ar
G. D. Mahan
Affiliation:
Solid State Division, Oak Ridge National Laboratory P.O.Box 2008, Oak Ridge, TN 37831–6030, and Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996–1200
Get access

Abstract

We report calculations which show that the band structure of CoSb3 is typical of a narrow band-gap semiconductor. The gap is strongly dependent on the relative position of the Sb atoms inside the unit cell. We obtain a band gap of 0.22 eV after minimization of these position. This value is more than four times larger than the result of a previous calculation which reported that the energy bands near the Fermi surface are unusual. The electronic states close to the Fermi level are properly described by a two-band Kane Model. The calculated effective masses and band gap are in excellent agreement with Shubnikov de Haas and Hall effect measurements. Recent measurements of the transport coefficients of this compound can be understood assuming it is a narrow band gap semiconductor, in agreement with our results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Caillat, T., Borshchevsky, A., and Fleurial, J.-P., in Proceedings of the XIth International conference on Thermoelectrics, University of Texas at Arlington, 1992, edited by K. A. Rao (University of Texas at Arlington Press, Arlington USA, 1993), p 98.Google Scholar
[2] Slack, Glen A. and Tsoukala, Veneta G., J. Appl. Phys. 76, 1665 (1994).CrossRefGoogle Scholar
[3] Jung, Dongwoon, Whangbo, Myung-Hwan, and Alvarez, Santiago, Inorg. Chem. 29, 2252 (1990).CrossRefGoogle Scholar
[4] Schmidt, Th., Kliche, G., and Lutz, H. D., Acta Crystallogr. Sect. C 43, 1678 (1987).CrossRefGoogle Scholar
[5] Lutz, H. D. and Kliche, G., Phys. Stat. Sol. (b) 112, 549 (1982).CrossRefGoogle Scholar
[6] Ackermann, J. and Wold, A., J. Phys. Chem Solids 38, 1013 (1977).CrossRefGoogle Scholar
[7] Dudkin, L. D. and Abrikosov, N. Kh., Sov. Phys. Solid State 1, 126 (1959).Google Scholar
[8] Morelli, D. T., Caillat, T., Fleurial, J.-P., Borshchevsky, A., Vandersande, J., Chen, B., and Uher, C., Phys. Rev. B bf 51, 9622 (1995).CrossRefGoogle Scholar
[9] Mandrus, D., Migliori, A., Darling, T. W., Hundley, M. F., Peterson, E. J., and Thompson, J. D., Phys. Rev. B 52, 4926 (1995).CrossRefGoogle Scholar
[10] Caillat, T., Borshchevsky, A., and Fleurial, J.-P., J. Appl. Phys. 80, 4442 (1996).CrossRefGoogle Scholar
[11] Arushanov, E., Fess, K., Kaefer, W., Kloc, Ch., and Bucher, E., Phys. Rev. B 56, 1911 (1997).CrossRefGoogle Scholar
[12] Arushanov, E., Rakoto, H., Respaud, M., Broto, J. M., Leotin, J., Kloc, Ch., Bucher, E., and Askenazy, S., Shubnikov de Haas ascillations in CoSb3 single crystals, preprint.Google Scholar
[13] Singh, D. J. and Pickett, W. E., Phys. Rev. B 50, 11235 (1994).CrossRefGoogle Scholar
[14] Zhukov, V. P., Phys. Solid State 38, 90 (1996).Google Scholar
[15] Nordström, L. and Singh, D. J., Phys. Rev. B 53, 1103 (1996).CrossRefGoogle Scholar
[16] Feldman, J. L. and Singh, D. J., Phys. Rev. B 53, 6273 (1996).CrossRefGoogle Scholar
[17] Llunell, M., Alemany, P., Alvarez, S., Zhukov, V. P., and Vernes, A., Phys. Rev. B 53, 10605 (1996).CrossRefGoogle Scholar
[18] Singh, D. J. and Mazin, I. I., Phys. Rev. B 56, R1650 (1997).CrossRefGoogle Scholar
[19] Wyckoff, R. W. G., Crystal Structures, (Interscience, New York, 1948), Sec. V,b16.Google Scholar
[20] Kane, E. O., in Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. (Academic, New York, 1975) Vol.1, Chap. 3.Google Scholar
[21] Blaha, P., Schwarz, K., and Luitz, J., WIEN97, Vienna University of Technology, 1997. (Improved and updated Unix version of the original copyrighted WIEN-code, which was published by P. Blaha, K. Schwarz, P. Soratin, and S. B. Trickey, in Comput. Phys. Commun. 59, 399 (1990)).Google Scholar
[22] Singh, D., Plane Waves, Pseudopotentials, and the LAPW Method (Kluwer Academic, New York, 1994).CrossRefGoogle Scholar
[23] Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
[24] Perdew, J. P., Burke, S. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
[25] Singh, D., Phys. Rev. B 43, 6388 (1991).CrossRefGoogle Scholar
[26] Rode, D. L., in Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1975) Vol.10.Google Scholar