Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T13:23:04.176Z Has data issue: false hasContentIssue false

Electronic Structure of Grain Boundaries and Interfaces in Polycrystalline Zinc Oxide

Published online by Cambridge University Press:  15 February 2011

M. H. Sukkar
Affiliation:
Department of Materials Science and Engineering, M.I.T., Cambridge, Massachusetts
H. L. Tuller
Affiliation:
Department of Materials Science and Engineering, M.I.T., Cambridge, Massachusetts
K. H. Johnson
Affiliation:
Department of Materials Science and Engineering, M.I.T., Cambridge, Massachusetts
Get access

Abstract

Preliminary theoretical models for the electronic structure of grain boundaries and interfaces in polycrystalline ZnO have been constructed on the basis of self-consistent-field X-alpha scattered-wave (SCF-Xα-SW) cluster molecular-orbital calculations. The disposition and character of the interface states, relative to the valence and conduction bands of the otherwise perfect crystalline material, have been studied for clusters representing coordinatively unsaturated Zn surface sites and molecular O2 chemisorption thereon. The possible effects of the resuiting interface states on electron transport at grain boundaries in ZnO varistors have been addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eda, K., J. Appl. Physics 49, 2964 (1978).Google Scholar
2. Clarke, D. R., J. Appl. Phys. 49, 2407 (1978).Google Scholar
3. Levine, J. D., Crit. Rev. Solid State Sci. 5, 597 (1975).Google Scholar
4. Emtage, P. R., J. Appl. Phys. 48, 4372 (1977).CrossRefGoogle Scholar
5. Pike, G. E. and Seager, C. H., J. Appl. Phys. 50, 3414 (1979).Google Scholar
6. Hagemark, K. I. and Chacka, L. C., J. Solid St. Chem. 15, 261 (1975).CrossRefGoogle Scholar
7. Briant, C. L. and Messmer, R. P., Phil. Mag. 42B, 569 (1980).Google Scholar
8. Slater, J. C. and Johnson, K. H., Phys. Rev. B5, 844 (1972);Google Scholar
8a Johnson, K. H., in Advances in Quantum Chemistry, Vol. 7, edited by Lowdin, P. O. (Academic, New York, 1973), p. 143;Google Scholar
8b Slater, J. C. and Johnson, K. H., Physics Today 27, 34 (1974);Google Scholar
8c Slater, J. C., The Self Consistent Field for Molecules and Solids, Vol. 4 of Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1974), p. 101;Google Scholar
8d Johnson, K. H., in Annual Review of Physical Chemistry, Vol. 26, edited by Eyring, H., Christensen, C. J. and Johnston, H. S. (Annual Reviews, Palo Alto, 1975); p. 39.Google Scholar
9. Heiland, G., Z. Phys. 148, 15 (1957).Google Scholar
l0. Selim, F. A. et al. , J. Appl. Phys. 51, 765 (1980).Google Scholar
ll. Kowalski, J. M., M.S. Thesis, Department of Materials Science and Engineering, June, 1978 (unpublished).Google Scholar
12. Gopel, W. J., J. Vac. Sci. Technol. 16, 1229 (1979).Google Scholar
13. Dewald, J. F., Bell Syst. Tech. J. 39, 615 (1960).Google Scholar
14. Gatos, H. G. and Lagowski, J., J. Vac. Sci. Technol. 10, 130 (1973).CrossRefGoogle Scholar
15. Ivanov, I. and Pollmann, J., Solid State Commun. 36, 361 (1980).Google Scholar
16. See, For example, Gopel, W. and Lampe, U., Phys. Rev. B 22, 6447 (1980).CrossRefGoogle Scholar