No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
The electronic structure of the Pu-based superconductor PuCoGa5 and the Pauli paramagnet UCoGa5 is investigated using photoemission spectroscopy. The photoemission data of PuCoGa5 reveal features at the Fermi energy EF and about 1-1.5 eV below EF indicative of itinerant and localized f-electrons, respectively. Angle-resolved spectra of UCoGa5 show two peaks at similar energies that are highly dispersive, providing evidence for itinerant character of the f-electrons in this material. A comparison of the PuCoGa5 and UCoGa5 data to the spectra of α-Pu and δ-Pu serves to place PuCoGa5 within the context of the more general electronic structure problem in elemental Pu.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.