No CrossRef data available.
Published online by Cambridge University Press: 16 February 2011
We have begun to investigate theoretically the electronic properties of several ideal epitaxial interfaces of diamond with Ni and Cu, both of which enjoy a close lattice match. Of particular interest is the mechanism responsible for formation of the Schottky barrier, which is not yet fully understood at the microscopic level. We find that both the barrier height and the chemical bonding at the interface are strongly dependent on interface orientation (i.e., the relative positioning of the two surfaces). For orientations near the minimum total energy geometry, the calculated Fermi level is apparently pinned around 1.7 and 2.1 eV for the (111) and (001) interfaces, respectively, relative to the valence band maximum. For orientations not near the total energy minimum, the calculated barrier height is zero. A tentative explanation for this difference is proposed.