Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T05:27:47.255Z Has data issue: false hasContentIssue false

Electronic Structure Studies of Diamond/Metal Interfaces

Published online by Cambridge University Press:  16 February 2011

Steven C. Erwin
Affiliation:
Complex Systems Theory Branch, Code 4692 Naval Research Laboratory, Washington DC 20375-5000
Warren C. Pickett
Affiliation:
Complex Systems Theory Branch, Code 4692 Naval Research Laboratory, Washington DC 20375-5000
Get access

Abstract

We have begun to investigate theoretically the electronic properties of several ideal epitaxial interfaces of diamond with Ni and Cu, both of which enjoy a close lattice match. Of particular interest is the mechanism responsible for formation of the Schottky barrier, which is not yet fully understood at the microscopic level. We find that both the barrier height and the chemical bonding at the interface are strongly dependent on interface orientation (i.e., the relative positioning of the two surfaces). For orientations near the minimum total energy geometry, the calculated Fermi level is apparently pinned around 1.7 and 2.1 eV for the (111) and (001) interfaces, respectively, relative to the valence band maximum. For orientations not near the total energy minimum, the calculated barrier height is zero. A tentative explanation for this difference is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rudder, R.A., Posthill, J.B., Hudson, G.C., Mantini, M.J., and Markunas, R.J., in Diamond Optics, edited by Feldman, A. and Holly, S. (SPIE, Bellingham, WA, 1989), Vol.969, p. 72.Google Scholar
2. Belton, D.N. and Schmieg, S.J., J. Appl. Phys. 66, 4224 (1989).Google Scholar
3. Kasi, S., Kang, H., and Rabelais, J.W., Phys. Rev. Lett. 59, 75 (1987).Google Scholar
4. Schottky, W., Z. Phys. 41, 570 (1940).Google Scholar
5. Bardeen, J., Phys. Rev. 71, 717 (1947); V. Heine, Phys. Rev. 138A, 1689 (1965).Google Scholar
6. Tersoff, J., Phys. Rev. Lett. 52, 465 (1985); Surf. Sci. 168, 275 (1986).Google Scholar
7. Spicer, W.E., Lindau, I., Skeath, P., Su, C.Y. and Chye, P., Phys. Rev. Lett. 44, 420 (1980).Google Scholar
8. Phillips, J.C., J. Vac. Sci. Technol., 11, 947 (1974); J.M. Andrews and J.C. Phillips, Phys. Rev. Lett. 40, 260 (1978).Google Scholar
9. Tung, R.T., Phys. Rev. Lett. 52, 462 (1984); J. Vac. Sci. Technol. B 2, 465 (1984).Google Scholar
10. Das, G.P., Blöchl, P., Andersen, O.K., Christensen, N.E., and Gunnarsson, O., Phys. Rev. Lett. 63, 1168 (1989).Google Scholar
11. Fujitani, H. and Asano, S., in Atomic Scale Calculations of Structure in Materials (present volume).Google Scholar
12. Hedin, L. and Lundqvist, B.I., J. Phys. C4, 2064 (1971).Google Scholar
13. Wei, S.-H., Krakauer, H., and Weinert, M., Phys. Rev. B 32, 7792 (1985), and references therein.Google Scholar
14. Erwin, S.C., Pederson, M.R., and Pickett, W.E., Phys. Rev. B 41 (1990).Google Scholar
15. Pickett, W.E. and Erwin, S.C., Phys. Rev. B 41, 9756 (1990).Google Scholar
16. Pandey, K.C., Phys. Rev. B 25, 4338 (1982).Google Scholar
17. Vanderbilt, D. and Louie, S.G., J. Vac. Sci. Technol. B 1, 723 (1983).Google Scholar
18. Louie, S.G. and Cohen, M.L., Phys. Rev. B 13, 2461 (1976).Google Scholar
19. Zegenhagen, J. and Patel, J.R., Phys. Rev. B 41, 5315 (1990).Google Scholar
20. Kaxiras, E. (private communication).Google Scholar