Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-27T16:21:21.132Z Has data issue: false hasContentIssue false

Electronic Transition-Related Optical Absorption in Vanadia Films

Published online by Cambridge University Press:  25 February 2011

Nada M. Abuhadba
Affiliation:
Materials Department, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, Wisconsin 53201
Carolyn R. Aita
Affiliation:
Materials Department, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, Wisconsin 53201
Get access

Abstract

Vanadium pentoxide (vanadia) is a wide band gap semiconductor. Its layered orthorhombic structure consists of alternating sublayers of V+O atoms and O atoms (vanadyl O) alone aligned perpendicular to the b-axis. This unique structure makes vanadia a useful host for alkali atom intercalation for electrochromic applications, and therefore, an understanding of its optical properties is important. Here, we study the optical absorption characteristics of vanadia in the incident photon energy range E=2.5–6.0 eV (λ=490–200 nm). The material is in the form of 0.1μm thick films sputter deposited in Ne/O2 discharges. Two types of films were studied: single-oriented films with the b-axis perpendicular to the substrate, and amorphous films with an oxygen deficiency. The optical absorption coefficient, α(E), was determined and interpreted in terms of the structure of the V 3d conduction band. Amorphous, O-deficient vanadia were examined for room temperature aging and were found to oxidize and increase in transmittance in the photon energy range studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. ASTM Joint Commission on Powder Diffraction Standards File No. 9–387, (1974). b and c are reversed in this reference from the manner in which they appear throughout the literature.Google Scholar
2. Bachmann, H. G., Ahmed, F. R., and Barnes, W. H., Z. Kristal. 115, S. 11 (1961).Google Scholar
3. Fiermans, L. and Vennik, J., Surf. Sci. 2, 187 (1968).CrossRefGoogle Scholar
4. Gillis, E. and Boesman, E., Phys. Status Solidi 14, 337 (1966).Google Scholar
5. Clauws, P. and Vennik, J., Phys. Status Solidi B 66, 553 (1974).Google Scholar
6. Lambrecht, W., Djafari-Rouhani, B., and Vennik, J., J. Phys. C 19, 369 (1986).Google Scholar
7. Ramirez, R., Casal, B., Utera, L., and Ruiz-Hitzky, E., J. Chem. Phys. in press.Google Scholar
8. Fiermans, L., Clauws, P., Lambrecht, W., Vandenbrouche, L., and Vennik, J., Phys. Status Solidi A 59, 495 (1980).Google Scholar
9. Fiermans, L., Vandenbrouche, L., Vandenberge, R., Vennik, J., and Dalmai, G., J. Microsc. Spectros. Electron. 4, 543 (1979).Google Scholar
10. Perlstein, J.H., J. Solid State Chem. 3, 217 (1971).Google Scholar
11. Bullot, J., Cordier, P., Gallais, O., Gauthier, M., and Babonneau, F., J. Non-cryst. Sol. 68, 135 (1984).Google Scholar
12. Bates, J. B., Dudney, N. J., Luck, C. F., and Klatt, L., Ceramic Transactions 11, 35 (1990).Google Scholar
13. Cogan, S. F., Nguyen, N. M., Perrotti, S. J., and Rauh, R. D. in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII (SPIE, 1016, 1988) pp. 5762.CrossRefGoogle Scholar
14. Cogan, S. F., Nguyen, N.M, Perrotti, S. J., and Rauh, R. D.: J. Appl. Phys. 66, 1989, 1333.CrossRefGoogle Scholar
15. Talledo, A., Andersson, A. M., Granqvist, C. G.: J. Mater. Res. 5, 1253 (1990).Google Scholar
16. Talledo, A., Andersson, A. M., and Granqvist, C. G., J. Appl. Physics, 69, 3261 (1991).CrossRefGoogle Scholar
17. Hansen, S. D. and Aita, C. R.: J. Vac. Sci. Technol. A 3, 660 (1985).Google Scholar
18. Aita, C.R., Liu, Y.-L., Kao, M. L., and Hansen, S. D., J. Appl. Phys. 60, 749 (1986).Google Scholar
19. Aita, C. R., Kwok, C.-K., and Kao, M. L., Mat. Res. Soc. Proc. 82, 435 (1987).Google Scholar
20. Aita, C. R. and Kao, M. L., J. Vac. Sci. Technol. A 5, 2714 (1987).Google Scholar
21. Aita, C. R., Liou, L.-J., Kwok, C.-K., Lee, R. C., and Kolawa, E., Thin Solid Films 193–4, 18 (1991).Google Scholar
22. Lee, R. C. and Aita, C. R., J. Appl. Phys. 70, 2094 (1991).CrossRefGoogle Scholar
23. Aita, C. R. and Tran, Ngoc C., J. Appl Phys. 56, 958 (1984).CrossRefGoogle Scholar
24. Coburn, J. W. and Kay, E., Appl. Phys. Lett. 18, 435 (1971).Google Scholar
25. Aita, C. R. and Marhic, M. E., J. Vac. Sci. Technol. A, 1(1), 69 (1983).Google Scholar
26. Abuhadba, N. M. and Aita, C. R., J. Appl. Phys. 71, xxx (1992).Google Scholar
27. Abuhadba, N. M. and Aita, C. R., Mater. Sci. Technol. xxx (1991).Google Scholar
28. Pankove, J. I., Optical Processes in Semiconductors (Prentice-Hill, Englewood Cliffs, NJ, 1971), p. 93.Google Scholar
29. Bullet, D. W., J. Phys. C.Solid St. Phys. 13, L595 (1980).Google Scholar
30. Mokerov, V. G., Makarov, V. L., Tulvinski, V. B., and Begishev, A. R., Opt. Spectrosc., 40, 58 (1976).Google Scholar