Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T02:04:00.014Z Has data issue: false hasContentIssue false

Electroplating of ZnO Nanowires Using Nanohole Arrays of Anodized Aluminum Oxide and Effects of Thermal Annealing

Published online by Cambridge University Press:  01 February 2011

Ken-Ichi Ogata
Affiliation:
i057060@ipcku.kansai-u.ac.jp, Kansai University, Hightech Research Center, 3-3-35 Yamatecho, suita, 564-8680, Japan
Shoso Shingubara
Affiliation:
shingu@ipcku.kansai-u.ac.jp, Kansai University, Suita, 564-8680, Japan
Hiromi Yorozu
Affiliation:
yorozu@shinchuo.co.jp, Shin-chuo Kogyo, Higashi-hiroshima, 739-0145, Japan
Tadahiko Nakanishi
Affiliation:
nakanishi@shinchuo.co.jp, Shin-chuo Kogyo, Higashi-hiroshima, 739-0145, Japan
Get access

Abstract

Electroplating of ZnO nanowires was conducted using gold embedded anodized aluminum oxide (AAO) films on Si substrates. For electroplating, insulating layers at the bottom of AAO nanohole structures need to be removed. After electroplating, hexagonal structure of vertical ZnO nanowires was observed, however, they were broken and lied down by thermal annealing process. Photoluminescence (PL) spectra were investigated and that of post annealed ZnO nanowires indicates that nitrogen atoms were incorporated as acceptor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005)Google Scholar
2. Tsukazaki, A., Ohtomo, A. and Kawasaki, M., Appl. Phys. Lett. 88, 152106 (2006)Google Scholar
3. Kamada, Y., Kawaharamura, T., Nishinaka, H., and Fujita, S., Jpn. J. Appl. Phys., 45, L857 (2006)Google Scholar
4. Maeda, K., Sato, M., Niikura, I. and Fukuda, T., Semicon. Sci. Technol., 4, S49 (2005)Google Scholar
5. Blumstengel, S., Sadofev, S., Xu, C., Puls, J., and Henneberger, F., Phys. Rev. Lett. 97, 237401 (2006)Google Scholar
6. Paunovic, M., Schlesinger, M., Fundamentals of Electrochemical Deposition (Wiley, 1998)Google Scholar
7. Masuda, H. and Fukuda, K., Science, 268, 1466 (1995)Google Scholar
8. Shingubara, S., Okino, O., Sayama, Y., Sakaue, H. and Takahagi, T., Jpn. J. Appl. Phys., 36 7791 (1997)Google Scholar
9. Li, Y., Meng, G. W., Zhang, L. D. and Phillipp, F., Appl. Phys. Lett. 76, 2011 (2000)Google Scholar
10. Shimizu, T., Nagayanagi, M., Ishida, T., Sakata, O., Oku, T., Sakaue, H., Takahagi, T. and Shingubara, S., Electochem. Solid. St. 9, J13 (2006)Google Scholar
11. Cui, J. B. and Gibson, U. J., Appl. Phys. Lett. 87, 133108 (2005)Google Scholar
12. Asoh, H., Matsuo, M., Yoshihama, M., and Ono, S., Appl. Phys. Lett. 83, 4408 (2003)Google Scholar
13. Look, D. C., Reynolds, D. C., Litton, C. W., Jones, R. L., Eason, D. B., and Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).Google Scholar
14. Rommeluère, J. F., Svob, L., Jomard, F., Mimila-Arroyo, J., Lusson, A., Sallet, V., and Marfaing, Y., Appl. Phys. Lett. 83, 287 (2003).Google Scholar
15. Teke, A., Özgür, Ü., Doğan, S., Gu, X., Morkoç, H., Nemeth, B., Nause, J., and Everitt, H. O., Phys. Rev. B 70, 195207 (2004).Google Scholar
16. Strassburg, M., Rodina, A., Dworzak, M., Haboeck, U., Krestnikov, I. L., Hoffmann, A., Gelhausen, O., Phillips, M. R., Alves, H. R., Zeuner, A., Hofmann, D. K. and Meyer, B. K., phys. stat. sol. b241, 607 (2004)Google Scholar
17. Perkins, C. L., Lee, S. H., Li, X., Asher, S. E., and Coutts, T. J., J. Appl. Phys. 97, 034907 (2005)Google Scholar
18. Maki, H., Sakaguchi, I., Ohashi, N., Sekiguchi, S., Haneda, H., Tanaka, J., and Ichinose, N., Jpn. J. Appl. Phys., 42, 75 (2003).Google Scholar
19. Ogata, K., Koike, K., Tanite, T., Komuro, T., Sasa, S., Inoue, M. and Yano, M., Sensor. Actuat. B-Chem., 100, 209 (2004)Google Scholar