Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T06:38:20.967Z Has data issue: false hasContentIssue false

Elevated Temperature Neutron Measurements of Thermal Residual Stresses in a Sic Fibre Reinforced Al Alloy

Published online by Cambridge University Press:  22 February 2011

Monica Ceretti
Affiliation:
Laboratoire Léon Brillouin, CE Saclay, F-91191 Gif sur Yvette (F)
M. Kocsis
Affiliation:
European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble (F)
A. Lodini
Affiliation:
IFTS, Université de Reims Champagne Ardenne (F)
Get access

Abstract

The main objective of the present investigation is to determine the evolution of residual stresses by neutron powder diffraction in an Al/SiC composite (Al 7075 reinforced by 27 vol.% SiC whiskers), originating from thermal treatment and mechanical loading. The results show that residual stresses in the matrix and in the reinforcement decrease in magnitude with increasing temperature and they reach the stress free state at the 'equivalent temperature'. As the temperature further increases, these stresses increase numerically in a reverse sense for both phases. The data obtained are analysed in terms of a simple model based on Eshelby's equivalent inclusion method.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Christman, T. and Suresh, S., Acta Metall. 36, 1691 (1988).Google Scholar
2 Hong, S.H., Sherby, O.D., Divecha, A.P., Karmakar, S.D. and MacDonald, B.A., J. Comp. Mater. 22, 102 (1988).Google Scholar
3 Daehn, G.S. and Gonzalez-Doncel, G., Metall. Trans. 20A, 2355 (1988)Google Scholar
4 Predecki, P., Abuharan, A. and Barret, C.S., Adv. X-ray Analysis 29, 71 (1985).Google Scholar
5 Majumdar, S., Kupperman, D.S. and Singh, J.P., J. Am. Ceram. Soc. 71, 858 (1988).Google Scholar
6 Allen, A.J., Bourke, M., Hutchings, M.T., Krawitz, A.D. and Windsor, C.G., in Residual Stresses in Science and Techecnology , edited by Macherauch, E. and Hauck, V., (DGM Verlag, 1987), vol.1, p. 151.Google Scholar
7 Ledbetter, H.M. and Austin, M.W., Mat. Sci. Engin. 89, 53 (1987).Google Scholar
8 Sun, Z.M., Li, J.B., Wang, Z.G. and Li, W.J., Acta Metall. Mater., 40, (11), 2961 (1992).Google Scholar
9 Whiters, P.J., Stobbs, W.M., Andersen, O.B., Acta Metall. 37, (11), 3061 (1989).Google Scholar
10 Allen, A.J., Hutchings, M.T., Windsor, C.G., Andreani, C., Adv. in Phys. 34 (34), 445 (1985).Google Scholar
11 Eshelby, J.D., Proc. Roy. Soc. A241, 376 (1957).Google Scholar
12 Arsenauld, R.J. and Taya, M., Acta Metall. 35, (3), 651 (1987).Google Scholar
13 Ceretti, M., PhD Thesis, Reims 1993.Google Scholar
14 Kröner, E., Physik, Z., 151, 504 (1958).Google Scholar
15 Pandey, B.P. and Dayal, B., Phys. Stat. Sol. (b) 58, K53 (1973).Google Scholar
16 Wilkinson, A.J. and Dingley, D.J., Acta Metall. Mater. 40 (12),. 3357 (1992).Google Scholar
17 Stobbs, W.M., Phil. Mag. 27, 319 (1977).Google Scholar
18 Mori, T., Okabe, M. and Mura, T., Acta Metall. 28, 319 (1980).Google Scholar