Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T14:40:27.740Z Has data issue: false hasContentIssue false

Enhancement of Nonvolatile Floating Gate Memory Devices Containing AgInSbTe-SiO2 Nanocomposite by Inserting HfO2/SiO2 Blocking Oxide Layer

Published online by Cambridge University Press:  11 July 2011

Kuo-Chang Chiang
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu, Taiwan 30010, R.O.C.
Tsung-Eong Hsieh
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu, Taiwan 30010, R.O.C.
Get access

Abstract

This work presents an enhancement of nonvolatile floating gate memory (NFGM) devices comprised of AgInSbTe (AIST) nanocomposite as the charge-storage trap layer and HfO2 or HfO2/SiO2 as the blocking oxide layer. A significantly large memory window (ΔVFB) shift = 30.7 V and storage charge density = 2.3×1013 cm−2 at ±23V gate voltage sweep were achieved in HfO2/SiO2/AIST sample. Retention time analysis observed a ΔVFB shift about 19.3 V and the charge loss about 13.4% in such a sample under the ±15V gate voltage stress after 104 sec retention time test. Regardless of applied bias direction, the sample containing HfO2/SiO2 layer exhibited the leakage current density as low as 150 nA/cm2 as revealed by the current-voltage (I-V) measurement. This effectively suppresses the electron injection between gate electrode and charge trapping layer and leads to a substantial enhancement of NFGM characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, B., Liu, J., J. Appl. Phys. Lett. 101, 124503 (2007).Google Scholar
2. Samanta, S. K., Yoo, W. J., Samudra, G., Tok, E. S., Bera, L. K., Balasubramanian, N., Appl. Phys. Lett. 87, 113110 (2005).Google Scholar
3. Jang, Y.-S., Yoon, J.-H., IEEE Trans.Electron Devices 50, 1823 (2003).Google Scholar
4. Kim, J., Yang, J., Lee, J., Hong, J., Appl. Phys. Lett. 92, 013512 (2008).Google Scholar
5. Pei, Y., Nishijima, M., Fukushima, T., Tanaka, T., Koyanagi, M., Appl. Phys. Lett. 93, 113115 (2008).Google Scholar
6. Wang, X. J., Zhang, L. D., Liu, M., Zhang, J. P., He, G., Appl. Phys. Lett. 92, 122901 (2008).Google Scholar
7. Liu, M., Fang, Q.; He, G., Zhu, L. Q., Zhang, L. D., Surf. Sci. 252, 8673 (2006).Google Scholar
8. Wang, S. J., Chai, J. W., Dong, Y. F., Feng, Y. P., Sutanto, N., Pan, J. S., Huan, A. C. H., Appl. Phys. Lett. 88, 192103 (2006).Google Scholar
9. Wang, H., Wang, Y., Zhang, J., Ye, C., Wang, H. B., Feng, J., Wang, B. Y., Li, Q., Jiang, Y., Appl. Phys. Lett. 93, 202904 (2008).Google Scholar
10. Chou, C. C., Hung, F. Y., Lui, T. S., Scripta Materialia 56, 1107 (2007).Google Scholar
11. Chiang, K.-C., Hsieh, T. -H., IEEE Trans. Magn. 47, 656662 (2010).Google Scholar
12. Maikap, S., Rahaman, S. Z., Tien, T. C., Nanotechnology 19, 435202 (2008).Google Scholar
13. Moulder, J. F., Stickle, W. F, Sobol, P. E., Bombem, K. D., Handbook of X-ray Photoelectron Spectroscopy, 2nd ed., Physical Electronics, Minnesota, 1992.Google Scholar