Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T09:45:27.008Z Has data issue: false hasContentIssue false

Epitaxial Formation of Rare Earth Silicides by Rapid Annealing

Published online by Cambridge University Press:  26 February 2011

J. A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
S. T. Picraux
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Rapid electron beam and lamp heating have been used to form thin epitaxial films of rare-earth suicides by reacting overlayers of the rare earths with (111) Si substrates. Of the metals Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, all but Gd are found to form epitaxial suicide layers by rapid solid-phase reaction, while suicides of Gd, Dy, Tm, Yb and Lu have been formed epitaxially by liquid phase reaction. For all but Er this is the first demonstration of epitaxial growth on Si. Details obtained from ion beam channeling analysis and transmission electron microscopy confirm the expected epitaxial structure and also show that the Si vacancies in the suicide form an ordered superlattice, rather than a random array as had been assumed before.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract number DE-AC04-76DP00789.

References

REFERENCES

1. Tung, R. T., Bean, J. C., Gibson, J. M., Poate, J. M. and Jacobson, D. C., Appl. Phys. Lett. 40, 681 (1982).Google Scholar
2. Tung, R. T., Gibson, J. M. and Poate, J. M., Appl. Phys. Lett. 12, 888 (1983).Google Scholar
3. For a review, see Tung, R. T., Poate, J. M., Bean, J. C., Gibson, J. M. and Jacobson, D. C., Thin Solid Films 93, 77 (1982).Google Scholar
4. Chen, L. J., Cheng, H. C., Lin, W. T., Chou, L. J. and Fung, M. S., Mat. Res. Soc. Symp. Proc. 37, 375 (1985).Google Scholar
5. Knapp, J. A. and Picraux, S. T., submitted to Appl. Phys. Lett.Google Scholar
6. Tu, K. N., Thompson, R. D., and Tsaur, R.-Y., Appl. Phys. Lett. 38, 626 (1981).Google Scholar
7. Norde, H., de Sousa Pires, J., d'Heurle, F. M., Pesavento, F., Petersson, S., and Tove, P. A., Appl. Phys. Lett. 38, 865 (1981).Google Scholar
8. Baglin, J. E. E., d'Heurle, F. M., and Petersson, C. S., Appl. Phys. Lett. 36, 594 (1980).Google Scholar
9. Thompson, R. D., Tsaur, B.-Y., and Tu, K. N., Appl. Phys. Lett. 38, 535 (1981).Google Scholar
10. Knapp, J. A., Picraux, S. T., Wu, C. S., and Lau, S. S., Appl. Phys. Lett. 44, 747 (1984).Google Scholar
11. Knapp, J. A., Picraux, S. T., Wu, C. S., and Lau, S. S., Journ. Appl. Phys. 58, 3747 (1985).Google Scholar
12. Baglin, J. E. E., d'Heurle, F. M., and Petersson, C. S., J. Appl. Phys. 52, 2841 (1981).Google Scholar
13. Knapp, J. A. and Picraux, S. T., J. Appl. Phys. 53, 1492 (1982).Google Scholar
14. Kern, W. and Puotinen, D. A., RCA review 31, 187 (1970).Google Scholar
15. Iandelli, A., Palenzona, A. and Olcese, G. L., J. Less-Comm. Met. 64, 213 (1979).Google Scholar