Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T06:24:52.617Z Has data issue: false hasContentIssue false

Epitaxial Growth and Characterization of the Ordered Vacancy Compound CuIn3Se5 on GaAs (100) Fabricated by Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

Art J. Nelson
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
M. Bode
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
G. Horner
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
K. Sinha
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
John Moreland
Affiliation:
National Institute of Standards and Technology, Boulder, CO 80303
Get access

Abstract

Epitaxial growth of the ordered vacancy compound (OVC) CuIn3Se5 has been achieved on GaAs (100) by molecular beam epitaxy (MBE) from Cu2Se and In2Se3 sources. Electron probe microanalysis and X-ray diffraction have confirmed the composition for the 1-3-5 OVC phase and that the film is single crystal Culn3Se5 (100). Transmission electron microscopy (TEM) characterization of the material also showed it to be single crystalline. Structural defects in the layer consisted mainly of stacking faults. Photoluminescence (PL) measurements performed at 7.5 K indicate that the bandgap is 1.28 eV. Raman spectra reveal a strong polarized peak at 152 cm−1, which is believed to arise from the totally symmetric vibration of the Se atoms in the lattice. Atomic force microscopy reveals faceting in a preferred (100) orientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rockett, A. and Birkmire, R.W., J. Appl. Phys. 70, R81 (1991).Google Scholar
2. Gabor, A., Proceedings of the 12th PV AR&D Review Meeting, Denver, CO, AIP Conference Proceedings (1993). (in press)Google Scholar
3. Nelson, A.J., Tuttle, J.R., Noufi, R., Rioux, D., Patel, R. and Hochst, Hartmut, J. Appl. Phys. 74, 5757 (1993).Google Scholar
4. Parthe, E., Proceedings of the 7th Int. Conf. Ternary and Multinary Compounds, Snowmass (MRS, Pittsburgh, 1987), p. 3 Google Scholar
5. Tuttle, J.R., Contreras, M., Tennant, A., Matson, R., Duda, A., Carapella, J., Albin, D. and Noufi, R., Proceedings of the 11 th PV AR&D Review Meeting, Denver, CO, AIP Conference Proceedings No. 268, 186 (1992).Google Scholar
6. Palatnik, L.S. and Rogacheva, E.I., Neorgan. Mat. 2, 478 (1966).Google Scholar
7. Ganbarov, D.M., Guseinov, G.G. and Karaev, Z.Sh., Neorgan. Mat. 8, 2211 (1972).Google Scholar
8. Schumann, B., Kühn, G., Boehnke, U. and Neels, H., Sov. Phys. Crystallogr. 26, 678 (1981).Google Scholar
9. Djega-Mariadassou, C., Rimsky, A., Lesueur, R. and Albany, J.H., Jpn. J. Appl. Phys. 19, 89 (1980).Google Scholar
10. Hönle, W., Kühn, G. and Boehnke, U.-C., Cryst. Res. Technol. 23, 1347 (1988).Google Scholar
11.See, e.g., Miller, A., MacKinnon, A. and Weaire, D., Solid State Physics 36, 119 (1981).Google Scholar
12. Pankove, J.I., Optical Processes in Semiconductors (Dover, New York, 1975).Google Scholar
13. Tanino, H., Maeda, T., Fujikake, H., Nakanishi, H., Endo, S. and Irie, T., Phys. Rev. B45, 13323 (1992).Google Scholar
14. Rincón, C. and Ramfirez, F.J., J. Appl. Phys. 72, 4321 (1992).Google Scholar
15. Razetti, C., Lottici, P.P. and Antonioli, G., Prog. Crystal Growth and Charact. 15, 43 (1987).Google Scholar
16. Zhong, Q., Innis, D., Kjoller, K. and Elings, V.B., Surf. Sci. Lett. 290, L688 (1993).Google Scholar
17. Wei, Su-Huai and Zunger, Alex, Appl. Phys. Lett. 63, 2549 (1993).Google Scholar
18. Nelson, A.J., Rockett, A., Colavita, E., Mike Engelhardt and Hartmut Hochst, Phys. Rev. B42, 7518 (1990).Google Scholar