Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T23:32:40.738Z Has data issue: false hasContentIssue false

Exciton Luminescence of Single-Crystal GaN

Published online by Cambridge University Press:  21 February 2011

J.R. Müllhaüser
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117-Berlin, Germany, jochen@pdi.wias-berlin.de
O. Brandt
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117-Berlin, Germany, jochen@pdi.wias-berlin.de
H. Yang
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117-Berlin, Germany, jochen@pdi.wias-berlin.de
K.H. Ploog
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117-Berlin, Germany, jochen@pdi.wias-berlin.de
Get access

Abstract

Detailed photoluminescence (PL) studies of high-quality MBE-grown single-crystal cubic and hexagonal GaN are presented. We identify free and bound exciton recombination. By means of a line-shape analysis, we quantitatively analyze our spectra, which were taken as a function of temperature (T = 4 - 300 K) and excitation density (Pex = 0.3 - 200W/cm2). We show the dominant recombination channel at 300 K to be free-excitonic in nature with an internal small-signal quantum efficiency of 6 · 10−3 for both cubic and hexagonal material. Based on a three-level model, activation energies for exciton dissociation are evaluated. Radiative (τrad ≈ 2 ns) and nonradiative lifetimes (τe ≈ 1μs, τh ≈ 20 ps) are determined, where in the latter case, electron and hole trapping are considered separately. Furthermore, we show that the dominant nonradiative recombination center, being a hole trap, saturates at Pex ≥ 20 W/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Menniger, J., Jahn, U., Brandt, O., Yang, H., Ploog, K.H., Phys. Rev. B, to be published (15.01.96)Google Scholar
2 Ramírez-Flores, G., Navarro-Contreras, H., Lastras-Martínez, A., Phys. Rev. B 50, 8433 (1994)Google Scholar
3 Monemar, B., Phys. Rev. B 10, 676 (1974)Google Scholar
4 Brandt, O., Klann, R., Müllhäuser, J.R., Yang, H., Ploog, K.H., unpublishedGoogle Scholar
5 Brandt, O., Yang, H., Jenichen, B., Suzuki, Y., Däweritz, L., Ploog, K.H., Phys. Rev. B 52, R2253 (1995)Google Scholar
6 Bebb, H.B., Williams, E.W. in Semiconductors and Semimetals Vol. 8. edited by Willardson, R.K., Beer, A.C. (Academic Press, New York and London 1972), pp. 227317 Google Scholar
7 Shinada, M., Sugano, S., J. Phys. Soc. Jap. 21, 1936 (1966)Google Scholar
8 O’Donnell, K.P., Chen, X., Appl. Phys. Lett. 58, 2924 (1991)Google Scholar
9 Bimberg, D., Sondergeld, M., Grobe, E., Phys. Rev. B 4, 3451 (1971)Google Scholar
10 Brandt, O., Kanamoto, K., Gotoda, M., Isu, T., Tsukada, N., Phys. Rev. B 51, 7029 (1995)Google Scholar