Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T18:08:23.068Z Has data issue: false hasContentIssue false

Experimental and Theoretical Study of the New Image Force Microscopy Principle (Invited Paper)

Published online by Cambridge University Press:  20 May 2011

H. Kumar Wickramasinghe
Affiliation:
Department of Electrical Engineering and Computer Science University of California, Irvine, CA, 92697
Indrajith Rajapaksa
Affiliation:
Department of Electrical Engineering and Computer Science University of California, Irvine, CA, 92697
Get access

Abstract

A new technique in microscopy is demonstrated in which the domain of Atomic Force Microscopy (AFM) is extended to optical spectroscopy at the nanometer scale. Molecular resonance of feature sizes down to the single molecular level were detected and imaged purely by mechanical detection of the force gradient between the interaction of the optically driven object molecular dipole and its mirror image in a Platinum coated scanning probe tip. We provide full experimental details including a basic theory for this new technique. The microscopy and spectroscopy technique is extendable to frequencies ranging from radio to infrared and the ultra violet.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S., and Lieber, C. M., Science 265, 20712074 (1994).Google Scholar
2 Martin, Y. and Wickramasinghe, H. K., Applied Physics Letters 50, 14551457 (1987).Google Scholar
3 Rugar, D., Mamin, H. J., Guethner, P., Lambert, S. E., Stern, J. E., McFadyen, I., and Yogi, T., Journal of Applied Physics 68, 1169 (1990).Google Scholar
4 Martin, Y., Abraham, D. W., and Wickramasinghe, H. K., Applied Physics Letters 52, 1103 (1988).Google Scholar
5 Nonnenmacher, M., O’Boyle, M. P., and Wickramasinghe, H. K., Applied Physics Letters 58, 2921 (1991).Google Scholar
6 Nonnenmacher, M. and Wickramasinghe, H. K., Ultramicroscopy 42, 351354 (1992).Google Scholar
7 Anderson, M. S., Applied Spectroscopy 54, 349352 (2000).Google Scholar
8 Dazzi, A., Prazeres, R., Glotin, F., and Ortega, J. M., Infrared Physics & Technology 49, 113121 (2006).Google Scholar
9 Rajapaksa, I., Uenal, K., and Wickramasinghe, H. K., Applied Physics Letters 97, 073121.Google Scholar
10 Martin, Y., Williams, C. C., and Wickramasinghe, H. K., Journal of Applied Physics 61, 4723 (1987).Google Scholar
11 Zerweck, U., Loppacher, C., Otto, T., Grafström, S., and Eng, L. M., Physical Review B 71, 125424 (2005).Google Scholar
12 Kobayashi, K., Yamada, H., and Matsushige, K., Applied Physics Letters 81, 2629 (2002).Google Scholar
13 Ameri, S., Ash, E. A., Neuman, V., and Petts, C. R., Electronics Letters 17, 337338 (1981).Google Scholar
14 Eric, D. B., Ivan, S. G., Shanti, R. R., and Kenneth, G. L., Journal of Applied Physics 95, 76557659 (2004).Google Scholar
15 Rugar, D., Yannoni, C. S., and Sidles, J. A., (1992).Google Scholar
16 Jackson, J. D., New York, Jhon Willey & Sons (1999).Google Scholar
17 Downes, A., Salter, D., and Elfick, A., spectroscopy 318, 131136 (2000).Google Scholar
18 Zenhausern, F., Martin, Y., and Wickramasinghe, H. K., Science 269, 1083 (1995).Google Scholar
19 Knoll, B. and Keilmann, F., Nature 399, 134137 (1999).Google Scholar