Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T08:40:17.257Z Has data issue: false hasContentIssue false

Exploring Space Groups for Three Dimensional Photonic Band Gap Structures Via Level Set Equations: The Face Centered Cubic Lattice

Published online by Cambridge University Press:  01 February 2011

Martin Maldovan
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
Chaitanya K. Ullal
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
Craig W. Carter
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
Edwin L. Thomas
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
Get access

Abstract

A level set approach was used to study photonic band gaps for dielectric composites with symmetries of the eleven face centered cubic lattices. Candidate structures were modeled for each group by a 3D surface given by f(x,y,z)-t=0 obtained by equating f to an appropriate sum of structure factor terms. This approach allows us to easily map different structures and gives us an insight into the effects of symmetry, connectivity and genus on photonic band gaps. It is seen that a basic set of symmetries defines the essential band gap and connectivity. The remaining symmetry elements modify the band gap. The eleven lattices are classified into four fundamental topologies on the basis of the occupancy of high symmetry Wyckoff sites. Of the fundamental topologies studied, three display band gaps--- including two: the (F-RD) and a group 216 structure that have not been reported previously.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Soukoulis, C. M., Photonic Bandgap Materials (Plenum, New York, 1996).Google Scholar
2. Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals (Princeton University, Princeton, NJ, 1995).Google Scholar
3. Sozuer, H. S., Haus, J. W., Inguva, R, Phys. Rev. B 45, 13962 (1992).Google Scholar
4. Ho, K. M., Chan, C. T., and Soukoulis, C. M., Phys. Rev. Lett. 65, 3152 (1990).Google Scholar
5. Chan, C. T., Ho, K.M., Soukoulis, C. M., Europhys. Lett. 16, 563 (1991).Google Scholar
6. Ho, K. M., Chan, C. T., Soukoulis, C. M., Solid State Comm. 89, 413 (1994).Google Scholar
7. Yablonovitch, E., Gmitter, T. J., Leung, K. M., Phys. Rev. Lett. 67, 2295 (1991).Google Scholar
8. Sozuer, H. S., Haus, J. W., J. Opt. Soc. Am. B 10, 296 (1993)Google Scholar
9. Biswas, R., Sigalas, M. M., Ho, K. M., and Lin, S. Y., Phys. Rev. B 65, 205121 (2002).Google Scholar
10. Toader, O., John, S., Science 292, 1133 (2001)Google Scholar
11. Chan, C. T., Datta, S., Ho, K. M., and Soukoulis, C. M., Phys. Rev. B 50, 1988 (1994).Google Scholar
12. Fan, S., Villeneuve, P. R., Meade, R., and Joannopoulos, J. D., Appl. Phys. Lett. 65, 1466 (1994).Google Scholar
13. Johnson, S. G., Joannopoulos, J. D., Appl. Phy. Lett. 77, 3490 (2000).Google Scholar
14. Maldovan, M., Urbas, A. M., Yufa, N., Carter, W. C., and Thomas, E. L., Phys. Rev. B 65, 165123 (2002).Google Scholar
15. Campbell, M., Sharp, D. N., Harrison, M. T., et al., Nature 404, 53 (2000).Google Scholar
16. Ullal, C. K., Maldovan, M., Wohlgemuth, M., White, C. A., Yang, S., and Thomas, E.L., J. Opt Soc. Am. A 20, 5 (2003).Google Scholar
17. Wohlgemuth, M., Yufa, N., Hoffman, J., Thomas, E. L., Macromolecules 34, 6083 (2001).Google Scholar