Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T01:04:31.105Z Has data issue: false hasContentIssue false

Fabrication and Electromechanical Properties of Conductive Polymer Microbridge Actuators

Published online by Cambridge University Press:  01 February 2011

Guandong Zhang
Affiliation:
Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal.
Joao Gaspar
Affiliation:
Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal.
Virginia Chu
Affiliation:
Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal.
Joao Pedro Conde
Affiliation:
Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal. Department of Chemical Engineering, Instituto Superior Técnico (IST), Portugal, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
Get access

Abstract

This paper reports on the fabrication of novel all-polymer microbridge electrostatic actuators based on conductive polymers and using surface micromachining on glass substrates. The electromechanical properties of the microbridges are studied using electrostatic actuation and optical and electrical detection. The pull-in phenomena and a dependence of the bridge deflection with the square of the applied voltage are observed. Compared to the silicon-based microbridges, the polymer structures present higher deflection amplitude for the same applied electrical force. The resonance frequency of the polymer bridges occurs in the MHz range and with quality factors of the order of 100 when measured in vacuum. The mechanical properties of the polymer device are affected by the residual stresses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1see, for example, Maluf, N., “An Introduction to Microelectromechanical Systems Engineering”, Artech House, Boston, 2000.Google Scholar
2 Quake, S. R. and Scherer, A., Science, 290, 1536(1998).Google Scholar
3 Horvath, R., Lindvold, L.R. and Larsen, N. B.. J. Micromech. Microeng. 13, 419(2003).Google Scholar
4 Bayindir, Z., Sun, Y. and Naughton, M. J., Applied Physics letters, 86, 064105 (2005).Google Scholar
5 Atkinson, G.M. et al., The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8-12, p.782785, (2003).Google Scholar
6 Thaysen, J., Cinkaya, A.D.Y., Vettiger, P. and Menon, A., J. Phys. D: Appl. Phys. 35, 2698 (2002).Google Scholar
7PMMA: E-Beam Resist PMMA 600K, AR-P 699.04, Allresist GmbH, Strausberg.Google Scholar
8 Baytron, P: Baytron, P, H.C. Starck GmbH, Goslar, Germany.Google Scholar
9 Heuer, H. W., Wehrmann, R. and Kirchmeyer, S., Adv. Funct. Mater. 12, 89 (2002).Google Scholar
10 Maboudian, R., Howe, R. T., J. Vac. Sci. Technol. B 15, 1 (1997).Google Scholar
11 Gaspar, J., Chu, V. and Conde, J.P., Journal of Applied Physics, 12, 10018(2003).Google Scholar
12 Ilic, B., Czaplewski, D., and Graighead, H.G., Appl. Phys. Lett. 77, 450 (2000).Google Scholar
13 Gaspar, J., Boucinha, M., Chu, V. and Conde, J.P., Mat. Res. Soc. Symp. Proc., 12, A26.4(2001).Google Scholar
14 Gaspar, J., Chu, V. and Conde, J.P., Appl. Phys. Lett. 84, 622 (2004).Google Scholar
15 Srikar, V.T. and Spearing, S. M., J. Microelectromech. Syst. 12, 310(2003).Google Scholar
16 Gaspar, J., Ph.D. Thesis, Instituto Superior Técnico, Portugal, 2005.Google Scholar