Published online by Cambridge University Press: 28 February 2011
A novel method of pulsed laser processing of ion-implanted silicon is presented, in which samples are irradiated in water ambient. The water layer in contact with the silicon during irradiationh as a considerable influence on melting and solidificationd ynamics. Still, perfect epitaxy of a thin amorphous layer can be obtained using this method.
For epitaxy to occur on a sample irradiated under water, 40 % more absorbed energy is necessary than for a sample irradiated in air. This indicates the occurrence of a considerable heat-flow from the silicon into the water layer during the laser pulse. From impurity redistribution after irradiation it is found that by processing a sample under water liquid-phase diffusion is reduced. Diffusion theory arguments indicate that this can be due to a reduction in total melt duration by about afactor 2–3. This can be due to faster cooling of the liquid silicon layer after the laser pulse whereas the melt-in time might be influenced as well. As a consequence, shallower impurity profiles can be obtained in crystalline silicon. No oxygen incorporation is detected and the surface morphology is not disturbed using this new process.