Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T23:23:17.603Z Has data issue: false hasContentIssue false

Fe Substituted, Laser Ablated YBa2Cu3O7 films using Off-Stoichiometric Targets

Published online by Cambridge University Press:  16 February 2011

Frank Bridges
Affiliation:
Physics Department, University of California, Santa Cruz, CA 95064. Xerox Palo Alto Research Center, Palo Alto, CA 94304.
J. Truher
Affiliation:
Physics Department, University of California, Santa Cruz, CA 95064.
D. K. Fork
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304. Stanford University, Stanford, CA 94305.
J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304.
D. B. Fenner
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304. Physics Department, Santa Clara University, CA 95053.
G. A. N. Connell
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304.
T. H. Geballe
Affiliation:
Stanford University, Stanford, CA 94305.
S. Johnson
Affiliation:
Stanford Research Institute, Stanford CA 94305.
L. Liu
Affiliation:
Stanford Research Institute, Stanford CA 94305.
Get access

Abstract

We present data on thin films of YBa2Cu3O7 (YBCO) and YBa2(Cu1−xFex)3O7 prepared by laser ablation using a sequence of targets, including Cu-deficient YBa2Cu2.4O7, CuO, and (CuO)1−y(FeO)y. This technique achieves mixing on an atomic scale. We find that stochiometric films, made using a combination of the Cudeficient target and CuO, have a sharp transition (width < 1K) near 90K although the Cu-deficient material alone has a broad transition at a lower Tc. We have achieved substitution of Fe on the Cu sites, using a sequence of the three targets for a range of Fe concentrations. Tc decreases nearly linearly with concentration and Tc → 0 near 15% Fe. The Tc suppression for the films is slightly less than the corresponding value obtained for bulk samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tarascon, J. M., Barboux, P., Miceli, P. F., Greene, L. H., Hull, G. W., Eibschutz, M. and Sunshine, S. A., Phys. Rev. 37, 7458 (1988).Google Scholar
2. Maeno, Y., Kato, M., Aoki, Y. and Fujita, T., Jpn. J. Appl. Phys. 26, L1982 (1987).Google Scholar
3. Jayaram, B., Agarwal, S. K., Rao, C. V., and Narlikar, A. V., Phys. Rev. B 38, 2903, (1988).Google Scholar
4. Bridges, F., Boyce, J. B., Claeson, T., Geballe, T. H. and Tarascon, J. M., Phys. Rev. B 39, 11603 (1989).Google Scholar
5. Howland, R. S., Geballe, T. H., Laderman, S. S., Fischer-Colbrie, A., Scott, M., Tarascon, J. M. and Barboux, P., Phys. Rev. B 39, 9017 (1989).Google Scholar
6. Bridges, F., Boyce, J. B., Claeson, T., Geballe, T. H. and Tarascon, J. M., submitted to Phys. Rev. (1990).Google Scholar
7. Qian, M., Stern, E. A., Ma, Y., Ingalls, R., Sarikaya, M., Thiel, B., Kurosky, R., Han, C., Hutter, L., and Aksay, I., Phys. Rev. B 39, 9192 (1989).Google Scholar
8. Venkatesan, T., Chase, E.W., Wu, X.D., Inam, A., Chang, C.C., and Shokoohi, F. K., Appl. Phys. Lett. 53, 243 (1988); and references therein.Google Scholar
9. Fork, D. K., Char, K., Bridges, F., Tahara, S., Lairson, B., Boyce, J. B., Connell, G. A. N., and Geballe, T. H., Int. Conf. Materials and Mechanisms of Superconductivity, Stanford, July 1989, in Physica C, edited by Phillips, N. E., Shelton, R. N., and Harrison, W. A., in press.Google Scholar
10. Boyce, J. B., Connell, G. A. N., Fork, D. K., Fenner, D. B., Char, K., Ponce, F. A., Bridges, F., Tramontana, J., Viano, A. M., Laderman, S. S., Taber, R. C., Tahara, S. and Geballe, T. H., SPIE, 1187, 136 (1989).Google Scholar