Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T00:55:26.446Z Has data issue: false hasContentIssue false

Ferroelectric Gate FET Memory based on Conduction of SBT-SiON Interface

Published online by Cambridge University Press:  26 February 2011

Masanori Okuyama
Affiliation:
okuyama@ee.es.osaka-u.ac.jp, Graduate School of Engineering Science, Osaka University, Department of Systems Innovation, 1-3 Machikaneyama-cho, Toyonaka City,Osaka, 560-8531, Japan
Takaaki Minami
Affiliation:
minami@semi.ee.es.osaka-u.ac.jp, Graduate School of Engineering Science, Osaka University, Department of Systems Innovation, 1-3 Machikaneyama-cho, Toyonaka City,Osaka, 560-8531, Japan
Bong-Yeon Lee
Affiliation:
bongyeon@semi.ee.es.osaka-u.ac.jp, Graduate School of Engineering Science, Osaka University, Department of Systems Innovation, 1-3 Machikaneyama-cho, Toyonaka City,Osaka, 560-8531, Japan
Takeshi Kanashima
Affiliation:
kanashima@ee.es.osaka-u.ac.jp, Graduate School of Engineering Science, Osaka University, Department of Systems Innovation, 1-3 Machikaneyama-cho, Toyonaka City,Osaka, 560-8531, Japan
Get access

Abstract

A new type of ferroelectric gate field-effect transistor (FET) using ferroelectric-insulator interface conduction has been proposed. Drain current flows along the interface between the ferroelectric and insulator layers and requires no semiconductor. This FET is fabricated by forming of source and drain electrodes on a SiON/Si substrate, dpositing SrBi2Ta2O9(SBT) film, forming topgate electrode, and forming bottom electrode. Drain current versus topgate voltage characteristics show a clockwise hysteresis loop similarly to the conventional metal-ferroelectric-insulator-semiconductor-FET(MFIS-FET). This FET shows that the On/Off ratio of the drain current is 104 to 105 and the Off state current of about 10−9 A.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moll, J.L. and Tarui, Y., IEEE Trans. Electron Devices ED–10(1963) 338.Google Scholar
2. Xiong, S., Sakai, S., Inshii, K., Migita, S., Sakamaki, K., Ota, H. and Suzuki, E., J. Appl. Phys. 94 (2003) 25592562.Google Scholar
3. Ito, D., Fujimura, N., Yoshimura, T. and Ito, T., J. Appl. Phys. 93 (2003) 55635567.Google Scholar
4. Takahashi, M., Sugiyama, H., Nakasio, T., Kodama, K., Noda, M. and Okuyama, M., Jpn. J. Appl. Phys. 40 (2001) 29232927.Google Scholar
5. Tokumitsu, E., Fujii, G. and Ishiwara, H., Jpn. J. Appl. Phys. 39 (2000) 21252130.Google Scholar
6. Hai, Le. Van., Kanashima, T. and Okuyama, M., The First International Conference on Communications and Electronics (HUT-ICCE 2006), Hanoi, Vetnam, 2006 Oct. 1011 Google Scholar
7. Kodama, K., Takahashi, M., Richinschi, D., Lerescu, A. I., Noda, M. and Okuyama, M., Jpn. J. Appl. Phys 41 (2002) 26392644.Google Scholar
8. Noda, M., Kodama, K., Ikeuchi, I., Takahashi, M. and Okuyama, M., Jpn. J. Appl. Phys. 42 (20003) 20552058 Google Scholar
9. Hirooka, G., Noda, M. and Okuyama, M., Jpn. J. Appl. Phys 43 (2004) 21902193 Google Scholar
10. Watanabe, Y. and Masuda, A., Jpn. J. Appl. Phys. 40(2001) 56105614 Google Scholar
11. Lee, B., Minami, T., Kanashima, T. and Okuyama, M., The 18th International Symposium on Integrated Ferroelectrics, Honolulu, 2006 Google Scholar