Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T16:45:57.468Z Has data issue: false hasContentIssue false

Field Emission Response from Multiwall Carbon Nanotubes Grown on Different Metallic Substrates

Published online by Cambridge University Press:  31 January 2011

Indranil Lahiri
Affiliation:
indranil78@yahoo.com, Florida International University, Mechanical & Materials Enigineering, Miami, Florida, United States
Raghunandan Seelaboyina
Affiliation:
rseel001@fiu.edu, Florida International University, Mechanical & Materials Enigineering, Miami, Florida, United States
Wonbong Choi
Affiliation:
choiw@fiu.edu, Florida International University, Mechanical and Materials Engineering, EC3465, 10555 West Flagler street, miami, Florida, 33174, United States
Get access

Abstract

Carbon nanotubes (CNT) have seen a wide variety of applications, spread well beyond the semiconductor industries - especially in field emission related devices. For its widest possible application, it has become very much important to grow CNTs on a variety of metallic substrates and understand their field emission response. In the present study, multiwall CNTs (MWCNT), grown on pure metallic substrates like Cu, Al and W, were subjected to field emission tests under DC and AC bias. Choice of diffusion barrier layer and catalyst was also varied, to verify their effects on the emission response. Field emission behaviors from all such structures were compared with MWCNTs grown on Si. It was found that the MWCNTs grown on pure Cu substrate showed excellent field electron emission response, in terms of low turn-on field, high emission current, long time stability and very high field enhancement factor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T. et al., Appl. Phys. Lett. 75, 3129 (1999).10.1063/1.125253Google Scholar
2. Charbonnier, F.M., Barbour, J., Garett, L.F. and Dyke, W.P., Proc. IEEE 51, 991 (1963).10.1109/PROC.1963.2379Google Scholar
3. Charbonnier, F.M., Appl. Surf. Sci. 94/95, 26 (1996).10.1016/0169-4332(95)00517-XGoogle Scholar
4. Teo, K.B.K., Minoux, E., Hudanski, L., Peauger, F., Schnell, J.P., Gangloff, L. et al., Nature 437, 968 (2005).10.1038/437968aGoogle Scholar
5. Jonge, N.de, Lamy, Y., Schoots, K. and Oosterkamp, T.H., Nature 420, 393 (2002).10.1038/nature01233Google Scholar
6. Zhang, J., Yang, G., Cheng, Y., Gao, B., Qiu, Q., Lee, Y.Z. et al., Appl. Phys. Lett. 86, 184104 (2005).10.1063/1.1923750Google Scholar
7. Heer, W.A.de, Chatelain, A. and Ugarte, D., Science 270, 1179 (1995).10.1126/science.270.5239.1179Google Scholar
8. Wang, Q.H., Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., Seelig, E.W. and Chang, R.P.H., Appl. Phys. Lett. 72, 2912 (1998).10.1063/1.121493Google Scholar
9. Collins, P.G. and Zettl, A., Appl. Phys. Lett. 69, 1969 (1996).10.1063/1.117638Google Scholar
10. Dai, H., Acc. Chem. Res. 35, 1035 (2002).10.1021/ar0101640Google Scholar
11. Talapatra, S., Kar, S., Pal, S.K., Vajtai, R., Ci, L., Victor, P. et al., Nature Nanotech. 1, 112 (2006).10.1038/nnano.2006.56Google Scholar
12. Lan, C., Srisungsitthisunt, P., Amama, P.B., Fisher, T.S., Xu, X. and Reifenberger, R.G., Nanotechnology 19, 125703 (2008).10.1088/0957-4484/19/12/125703Google Scholar
13. Kim, D., Lim, S.H., Guiley, A.J., Cojocaru, C.S., Bouree, J.E., Vila, L. et al., Thin Solid Films 519, 706 (2008).10.1016/j.tsf.2007.06.089Google Scholar
14. Yin, X., Wang, Q., Lou, C., Zhang, X. and Lei, W., Appl. Surf. Sci. 254, 6633 (2008).10.1016/j.apsusc.2008.04.040Google Scholar
15. Seelaboyina, R., Bodepalli, S., Noh, K., Leon, M. and Choi, W.B., Nanotechnology 19, 065605 (2008).10.1088/0957-4484/19/6/065605Google Scholar
16. Lahiri, I., Seelaboyina, R. and Choi, W.B., Carbon 48, (2010) (in press).Google Scholar
17. Lee, Y.-H., Choi, C.-H., Jang, Y.-T., Kim, E.-K. and B.-Ju, K., Appl. Phys. Lett. 81, 745 (2002).10.1063/1.1490625Google Scholar
18.www.environmetalchemistry.com/yogi/periodic/electrical.html as viewed on 11 Nov. 2009.Google Scholar
19. McTeer, A., US Patent No. 6 204 179 B1 (20 March 2001).Google Scholar