Published online by Cambridge University Press: 17 March 2011
The sidewalls of etched Si lines will be the carrier channel surfaces in FinFET devices. These surfaces must be as smooth as possible for optimal device performance. Thus, the ability to quantitatively measure sidewall roughness is essential to process development. A methodology to quantitatively measure Fin sidewall roughness by AFM is presented. The samples were prepared for measurement by cleaving along the length of the Fins or dense-line test structures and by FIB polishing to bring the edge of the sample close to the sidewall of the etched feature. The cleaved and FIB-polished sample was mounted 17 degrees shy of normal. This exposes the sidewall on the top surface while preventing shadowing of the lower part of the sidewall due to contact between the side of the probe support and the cleaved or polished edge. Quantitative AFM measurements taken by this method show meaningful differences in the sidewall roughness for samples that have seen different sidewall smoothing treatments. The average observed rms roughness values for various surface-smoothing treatments range from 0.8 to 1.8 Å for a 50 nm square area.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.