Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T00:57:00.688Z Has data issue: false hasContentIssue false

Flame Synthesis of Carbon Nanotubes: Premixed and Diffusion Flame Configurations Illustrating Roles of Gas Composition and Catalyst

Published online by Cambridge University Press:  11 September 2013

Randy L. Vander Wal*
Affiliation:
Penn State University, John and Willie Leone Family Dept. of Energy and Mineral Engineering, & The EMS Energy Institute, 203 Hosler, University Park, PA 16802, U.S.A.
Get access

Abstract

Illustrated in this talk will be the use of premixed and diffusion flames as reaction environments for carbon nanotube synthesis. We have tested both systems using catalysts as aerosols and supported upon substrates. Highlights will be shown demonstrating success and further challenges. For illustration, this abstract illustrates two key parameter spaces, namely gas composition and catalyst size and composition in premixed and diffusion flames, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dagani, R. C&E News, January 14, 2002. pp 2528.Google Scholar
Park, C.; Engel, E. S.; Crowe, A.; Gilbert, T. R.; Rodriguez, N. M. Langmuir 2000, 16, 8050.CrossRefGoogle Scholar
Claye, A. S.; Fischer, J. E.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E. J. Electrochem. Soc. 2000, 147, 2845.CrossRefGoogle Scholar
Maurin, G.; Bousquet, Ch.; Henn, F.; Bernier, P.; Almairac, R.; Simon, B. Chem. Phys. Lett. 1999, 312, 14.CrossRefGoogle Scholar
Lu, W.; Chung, D. D. L. Carbon 2001, 39, 493.CrossRefGoogle Scholar
Rodriquez, N. M. J. Mater. Res. 1993, 8, 3233.CrossRefGoogle Scholar
Steigerwait, E. S.; Deluga, G. A.; Lukehart, C. M. J. Phys. Chem. B 2002, 106, 760.CrossRefGoogle Scholar
Rodriquez, N. M.; Kim, M.-S.; Baker, R. T. K. J. Phys. Chem. 1994, 98, 13108.CrossRefGoogle Scholar
Ajayan, P. M.; Stephan, O.; Colliex, C.; Trauth, D. Science 1994, 265, 1212.CrossRefGoogle Scholar
Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C. Appl. Phys. Lett. 1999, 75, 1329.CrossRefGoogle Scholar
Schadler, L. S.; Giannaris, S. C.; Ajayan, P. M. Appl. Phys. Lett. 1998, 73, 3842.CrossRefGoogle Scholar
Bower, C.; Rosen, R.; Jin, L.; Han, J.; Zhou, O. Appl. Phys. Lett. 1999, 74, 3317.CrossRefGoogle Scholar
Alvarez, W. E.; Kitiyanan, B.; Borgna, A.; Resaco, D. E. Carbon 2001, 39, 547.CrossRefGoogle Scholar
Su, M.; Zheng, B.; Liu, J. Chem. Phys. Lett. 2000, 322, 321.CrossRefGoogle Scholar
Colomer, J.-F.; Stephan, C.; Lefrant, S.; Van Tendeloo, G.; Willems, I.; Konya, Z.; Fonseca, A.; Laurent, Ch.; Nagy, J. B. Chem. Phys. Lett. 2000, 317, 83.CrossRefGoogle Scholar
Cassell, A. M.; Raymakers, J. A.; Kong, J.; Dai, H. J. Phys. Chem. B 1999, 103, 6484.CrossRefGoogle Scholar
Andrews, R.; Jacques, D.; Rao, A. M.; Derbyshire, F.; Qian, D.; Fan, X.; Dickey, E. C.; Chen, J. Chem. Phys. Lett. 1999, 303, 467.CrossRefGoogle Scholar
Cheng, H. M.; Li, F.; Su, G.; Pan, H. Y.; He, L. L.; Sun, X.; Dresselhaus, M. S. Appl. Phys. Lett. 1998, 72, 3282.CrossRefGoogle Scholar
Hafner, J. H.; Bronikowski, M. J.; Azamian, B. R.; Nikolaev, P.; Rinzler, A. G.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Chem. Phys. Lett. 1998, 296, 195.CrossRefGoogle Scholar
Cassell, A. M.; Raymakers, J. A.; Kong, J.; Dai, H. J. Phys. Chem. B 1999, 103, 6484.CrossRefGoogle Scholar
Flahaut, E.; Govindaraj, A.; Peigney, A.; Laurent, Ch.; Rousset, A.; Rao, C. N. R. Chem. Phys. Lett. 1999, 300, 236.CrossRefGoogle Scholar
Monthioux, M.; Smith, B. W.; Burteaux, B.; Claye, A.; Fischer, J. E.; Luzzi, D. E. Carbon 2001, 39, 1251.CrossRefGoogle Scholar
Zhao, B.; Hu, H.; Niyogi, S.; Itkis, M. E.; Hamon, M. A.; Bhowmik, P.; Meier, M. S.; Haddon, R. C. J. Am. Chem. Soc. 2001, 123, 11673.CrossRefGoogle Scholar
Chiang, I. W.; Brinson, B. E.; Smalley, R. E.; Margrave, J. L.; Hauge, R. H. J. Phys. Chem B 2001, 105, 1157.CrossRefGoogle Scholar
Vander Wal, R. L., Combust. Flame, 2002, 130, 37.CrossRefGoogle Scholar
Vander Wal, R. L.; Hall, L. J. Chem. Phys. Lett. 2001, 349, 178.CrossRefGoogle Scholar
Vander Wal, R. L.; Ticich, T. M. Chem. Phys. Lett. 2001, 336, 24.CrossRefGoogle Scholar
Vander Wal, R. L.; Ticich, T. M. J. Phys. Chem. B 2001, 105, 10249.CrossRefGoogle Scholar
Vander Wal, R. L.; Ticich, T. M.; Curtis, V. E. Chem. Phys. Lett. 2000, 323, 217.CrossRefGoogle Scholar
Vander Wal, R. L.; Ticich, T. M.; Curtis, V. E. J. Phys. Chem. A 2000, 104, 7209.CrossRefGoogle Scholar
Vander Wal, R. L.; Ticich, T. M.; Curtis, V. E. J. Phys. Chem. B 2000, 104, 11606.CrossRefGoogle Scholar
Vander Wal, R. L.; Hall, L. J.; Berger, G. M. The 29th International Combustion Symposium, 2002, pp. 10791085.Google Scholar
Vander Wal, R. L. Chem. Phys. Lett. 2000, 324, 217.CrossRefGoogle Scholar
Yuan, L.; Saito, K.; Pan, C.; Williams, F. A.; Gordon, A. S. Chem. Phys. Lett. 2001, 340, 237.CrossRefGoogle Scholar
Yuan, L.; Saito, K.; Hu, W.; Chen, Z. Chem. Phys. Lett. 2001, 346, 23.CrossRefGoogle Scholar
Borman, G. L.; Ragland, K. W. Combustion Engineering; WCB Mc-Graw Hill Inc.: New York, 1998.Google Scholar
The Combustion Handbook; Zink, J., Ed.; Wiley and Sons: New York, 2000.Google Scholar
Geurts, F. W. H. A.; Sacco, A. Jr. Carbon 1992, 30, 415.CrossRefGoogle Scholar
Somorjai, G. A.; Kim, C. M.; Knight, C. In Surface science of catalysis: In situ probes and reaction kinetics. (Dwyer, D. J., Hoffman, F. M. Eds.) American Chemical Society, Washington, DC 1992.Google Scholar
Park, C.; Rodriguez, N. M.; and Baker, R. T. K.; J. Catal. 1997, 169, 212.CrossRefGoogle Scholar
Nolan, P. E.; Lynch, D. C.; Cutler, A. H.; Carbon 1994, 32, 477.CrossRefGoogle Scholar
Yang, K. L.; and Yang, R. T.; Carbon 1986, 24, 687.CrossRefGoogle Scholar
Jablonski, G. A.; Guerts, F. W.; Sacco, A. Jr. Carbon 1992, 30, 99.CrossRefGoogle Scholar
Soneda, Y.; Makino, M. Carbon 2000, 38, 475.CrossRefGoogle Scholar
Jablonski, G. A.; Geurts, F. W.; Sacco, A. Jr.; Biederman, R. R. Carbon 1992, 30, 87.CrossRefGoogle Scholar
Sacco, A. Jr.; Geurts, F. W. H. A.; Jablonski, G. A.; Lee, S.; Gately, R. A. J. Catal. 1989, 119, 322.CrossRefGoogle Scholar
Bradley, J. R.; Chen, Y.-L.; Sturner, H. W. Carbon 1985, 23, 715.CrossRefGoogle Scholar
Sacco, A. Jr.; Thacker, P.; Chang, T. N.; Chiang, A. T. S. J. Catal. 1984, 85, 224.CrossRefGoogle Scholar
Guinot, J.; Audier, M.; Coulon, M.; Bonnetain, L. Carbon 1981, 19, 95.CrossRefGoogle Scholar
Baird, T.; Fryer, J. R.; Grant, B. Carbon 1974, 12, 591.CrossRefGoogle Scholar
Derbyshire, F. J.; Presland, A. E. B.; Trimm, D. L. Carbon 1975, 13, 111.CrossRefGoogle Scholar
Presland, A. E. B.; Walker, P. L. Jr. Carbon 1969, 7, 1.CrossRefGoogle Scholar
Ruston, W. R.; Warzee, M.; Hennaut, J.; Waty, J. Carbon 1969, 7, 47.CrossRefGoogle Scholar
Kodas, T. T.; Smith, M. H.; in Aerosol Processing of Materials, Wiley-VCH, New York 1999.Google Scholar
Nikolaev, P.; Bronikowski, M. J.; Kelley, R.; Bradley, K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; and Smalley, R. E.; Chem. Phys. Lett. 1999, 313, 91.CrossRefGoogle Scholar
Bladh, K.; Falk, L. K. L.; and Rohmund, F.; Appl. Phys. 2000, A70, 372.Google Scholar
Motojima, S.; Asakura, S.; Kasemura, T.; Takeuchi, S.; and Iwanaga, H.; Carbon 1996, 34, 289.CrossRefGoogle Scholar