Published online by Cambridge University Press: 15 February 2011
Flames offer a potential for the synthesis of carbon nanotubes in large quantities at modest costs. This study aims to examine the conditions for carbon nanotube formation in premixed flames and to characterize the morphology of solid carbon deposits and their primary formation mechanisms in the combustion environment. Single walled nanotubes have been observed in the post-flame region of a premixed acetylene/oxygen/argon flame operated at 50 Torr (6.7 kPa) with iron pentacarbonyl vapor used as a source of metallic catalyst. A thermophoretic sampling method and transmission electron microscopy were used to characterize the solid material present in the flame at various heights above burner (HAB), giving resolution of formation dynamics within the flame system. Catalyst particle formation and growth are observed in the immediate post-flame region, 10 to 40 mm HAB, with coagulation leading to typical particle sizes on the order of 5 to 10 nm. Nanotubes were observed to be present after 40 mm HAB (∼34 milliseconds) with nanotube inception occurring as early as 30mm HAB (∼25 ms). Between 40 and 70 mm HAB (∼30 ms), nanotubes are observed to form and coalesce into clusters. Based on the rapid appearance of nanotubes in this region, it appears that once initiated, the nanotube growth occurs quite rapidly, on the order of 10 νm/s. A nanotube formation ‘envelope’ is evident with a formation limited to fuel equivalence ratios between a lower limit of 1.5 and an upper limit of 1.9. A continuum of morphologies ranging from relatively clean clusters of nanotubes to amorphous material is observed between the lower and upper limits. We suggest that the diversity of morphologies is due to competition between carbon precipitation pathways. High resolution TEM revealed the nanotubes to be primarily single walled. Raman spectroscopy confirmed the presence of single wall nanotubes and indicated a broad range of diameters and differences in chirality to plasma-arc generated material.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.