Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T20:36:52.501Z Has data issue: false hasContentIssue false

Formation of Ferromagnetic/Ferroelectric Superlattices by a Laser MBE and Their Electric & Magnetic Properties

Published online by Cambridge University Press:  10 February 2011

Hitoshi Tabata
Affiliation:
ISIR-Sanken, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567, Japan, tabata@sanken.osaka-u.ac.jp
Kenji Ueda
Affiliation:
ISIR-Sanken, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567, Japan, tabata@sanken.osaka-u.ac.jp
Tomoji Kawai
Affiliation:
ISIR-Sanken, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567, Japan, tabata@sanken.osaka-u.ac.jp
Get access

Abstract

We have constructed artificial superlattices with a combination of magnetic/magnetic and ferroelectric/ferromagnetic materials using a laser ablation technique. An ideal hetero-epitaxy can be obtained due to the similar crystal structure of the perovskite type di/ferroelectric BaTiO3, Pb(Zr,Ti)O3 (so-called PZT), SrTiO3 and ferro/antiferromagnetic LaFeO3, LaCrO3, (La,Sr)MnO3. First of all, we have controlled ferromagnetic order on LaFeO3/LaCrO3 superlattices formed on SrTiO3(l11) substrate. Such a spin structure(ferromagnetic order) can't be got in bulk condition. In the heterostructured ferromagnetic /ferroelectric devices, (La,Sr)MnO3/PZT there are remarkable and interesting phenomena. The electric properties of the ferromagnetic material can be controlled by the piezoelectric effect via distortion of the crystal structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ahn, C.H., Trísceme, J.M., Archibald, N., Decroux, M., Hammond, R.H., Geballe, T.H., Fisher, O. and Beaseley, M.R., Science 269, 373 (1995).Google Scholar
2. Erbil, A., Kim, Y. and Gerhardt, A., Phys. Rev. Lett. 77, 1628 (1996).Google Scholar
3. Ramesh, R., Inam, A., Wilkens, B., Chan, W.K., Sands, T, Tarascon, J.M., Fork, D.K., Geballe, T.H., Evans, J. and Bullinton, J., Appl. Phys. Lett. 59, 1782 (1991).Google Scholar
4. Ogale, S.B., Talyansky, V., Chen, C.H., Ramesh, R., Greene, R.L. and Venkatesan, T., Phys. Rev. Lett. 77, 1159(1996).Google Scholar
5. Yoshiasa, A., Inoue, Y., Kanamaru, F. and Koto, K., J. Solid State Chem. 86, 75 (1990)Google Scholar
6. Tabata, H., Tanaka, H. and Kawai, T., Appl. Phys. Lett. 65, 1970(1994).Google Scholar
7. Tabata, H., Tanaka, H., Kawai, T. and Okuyama, M., Jpn. J. Appl. Phys., 34 544 (1995).Google Scholar
8. Kanamori, J.: J. Phys. Chem. Solids, 10 (1958) 87 Google Scholar
9. Goodenough, J.B. : Phys. Rev., 100 (1955) 564 Google Scholar
10. Wold, A. and Croft, W., : J. Phys. Chem., 63 (1959) 447 Google Scholar
11. Belayachi, A., Nogues, M., Dormann, J. -L., and Taibi, M. : Eur. J. Solid. State. Inorg. Chem., t.33 (1996) 1039 Google Scholar
12. Zhao, G., Conder, K, Keller, H. and Muller, K.A., Nature 381, 676 (1996).Google Scholar
13. Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L. and Samwer, K., Phys. Rev. lett. 71, 2331 (1993).Google Scholar
14. Tokura, Y., Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G. and Furukawa, N., J. Phys. Soc. Jpn. 63, p. 3931 (1994).Google Scholar
15. Manhart, J. J., Schlom, D.G., Bednorz, J.G. and Muller, K.A., Phys. Rev. Lett. 67, 2099(1991)2099Google Scholar
16. Walkenhorst, A., Doughty, C., Xi, X.X., Li, Q., Lobb, C.I., Mao, S.N. and Venkatesan, T., Phys. Rev. Lett. 69, p. 2709 (1992).Google Scholar