Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T09:41:37.530Z Has data issue: false hasContentIssue false

Formation of Ultra-Thin Silicon Oxynitride Films by Low-Energy Nitrogen Implantation.

Published online by Cambridge University Press:  21 February 2011

J. A. Diniz
Affiliation:
DSIF/FEE- UNIVERSITY OF CAMPINAS (UNICAMP), Campinas-SP-Brazil-cp, 6101-cep. 13.081-970, diniz@fee.unicamp.br.
P. J. Tatsch
Affiliation:
DSIF/FEE- UNIVERSITY OF CAMPINAS (UNICAMP), Campinas-SP-Brazil-cp, 6101-cep. 13.081-970, diniz@fee.unicamp.br.
L. C. Kretly
Affiliation:
CCS/UNICAMP, Campinas, SP-Brazil-cp.6061-cep. 13.081-970.
J. E. C. Queiroz
Affiliation:
CCS/UNICAMP, Campinas, SP-Brazil-cp.6061-cep. 13.081-970.
J. Godoy Fo
Affiliation:
CCS/UNICAMP, Campinas, SP-Brazil-cp.6061-cep. 13.081-970.
Get access

Abstract

Oxynitrides (SiOxNy) have been used as gate insulators for submicron devices [1]. The present work reports the oxynitride formation at SiO2/Si structure by N2+ implantation at low energies. Si substrates were implanted with N2+ ion beams (energy = 5.6 keV and dose =1×10 ions/cm2), annealed at 950°C for 30 min in N2 ambient, oxidized at 950°C in O2 + 1% TCE environment and annealed at 950°C for 30 min in N2. After these process steps, the oxynitride formation was investigated by FTIR, SIMS and ellipsometric analysis. These physical characterizations revealed the presence of Si-0 and Si-N bonds. The film thicknesses and refractive indexes were 7 nm and 1.62, respectively. The dielectric constant = 4.39 and effective charge density = 7xl010 cm–2 were determined by C-V, indicating that the SiOxNy films formed are suitable gate insulators for MOS devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tobin, P.J., Okada, Y., Ajuria, S.A., Lakhotia, V., Feil, WA. and Hedge., R.I., J. Appl. Phys., 75(3), 1811 (1994).Google Scholar
2 Haddad, S. and Liang, M.-S., IEEE Electron Dev. Lett., EDL-8 (2), 58 (1987).Google Scholar
3 O'clock, G.D. Jr., Huck, M.W., Peters, M.S., Turner, M.J., Carlson, B.A. and Katz, W., IEEE Trans, on Semic. Manuf, 1 (4), 133 (1988).Google Scholar
4 Donovan, R.P. and Simons, M., J. Appl. Phys., 43 (6), 2897 (1972).Google Scholar
5 Severi, M., Dori, L. and Impronta, M., IEEE Electron Dev. Lett., EDL-6, 3 (1985).Google Scholar
6 Wu, Y.-L. and Hwu, J.-G., Japan J. Appl. Phys., 33 (1), n.9A, 5101 (1994).Google Scholar
7 Josquin, W.J.M.J., Nuclear Inst. and Methods, 209/210, 581 (1983).Google Scholar
8 Fritzche, C.R. and Rothemund, W., J. Eletrochemic. Soc., 120 (11), 1603 (1973).Google Scholar
9 Molle, P., Jaussaud, C. and Bruel, M., Nuclear Instr. and Methods, B55, 860 (1991).Google Scholar
10 Ziegler, J.F., Biersack, J.P. and Littmark, U., TRIM-1992, Version 92.12.Google Scholar
11 Deal, B.E., Fleming, P.J. and Castro, P.L., J. Electrochemic. Soc, 115 (3), 300 (1963).Google Scholar
12 Weidner, M., Roseler, A. and Eicher, M., Thin Solid Films, 234, 337 (1993).Google Scholar
13 Wada, Y. and Ashikawa, M., Japan J. Appl. Physics, 15 (2), 389 (1976).Google Scholar
14 Brown, D.M., Gray, P.V., Heumann, F.K., Philipp, H.R. and Taft, E.A., J. Electrochemic Soc, 115(3), 311 (1963).Google Scholar
15 Lange, P., Bernt, H., Hartmannsgruber, E. and Naumann, F., J. Eletrochem. Soc., 141 (1), 259 (1994).Google Scholar
16 Diniz, J.A., PhD thesis, University of Campinas/UNICAMP-Brazil, 1996 (unpublished).Google Scholar