Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T11:52:48.588Z Has data issue: false hasContentIssue false

Fourier Transform Analysis of Franz-Keldysh Oscillations Observed in Electromodulation Spectra

Published online by Cambridge University Press:  15 February 2011

R. T. Holm
Affiliation:
Naval Research Laboratory, Code 6862, Washington, DC 20375
O. J. Glembocki
Affiliation:
Naval Research Laboratory, Code 6862, Washington, DC 20375
J. A. Tuchman
Affiliation:
Optex Corporation, 2 Research Court, Rockville, MD 20850
Get access

Abstract

Discrete Fourier transform (DFr) techniques have been applied to the analysis of the Franz-Keldysh oscillations used in determining electric fields. It is shown that the DFT can be applied to a wide range of EM line shapes and that it can yield accurate results for the electric fields in the case where one field is present in the sample. For cases where there are contributions to the EM spectrum from either two electric fields or two degenerate transitions, such as excitations originating from light- and heavy-hole valence bands, care must be applied in extracting the field from the lower intensity DF” peak. The window used to obtain the DFT influences the peak position of lower intensity DFT peak and thus can lead to spurious shifts of the line.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alperovich, V.L., Jaroshevich, A.S., Schreiber, H.E. and Terekhov, A.S., Solid State Elect., 37, 657 (1994).Google Scholar
2. Hoof, C. Van, Deneffe, K., Boeck, J. De, Arnet, D.J. and Borghs, G., Appl. Phys. Lett. 54, 608 (1989).Google Scholar
3. Yin, X., Chen, H.M., Pollak, F.H., Cao, Y., Montano, P.A., Kirchner, P.D., Pettit, G.D. and Woodall, J.M., J. Vac. Sci. Technol. B9, 2114 (1991)Google Scholar
4. Yin, X., Chen, H.M., Pollak, F.H., Cao, Y., Montano, P.A., Kirchner, P.D., Pettit, G.D. and Woodall, J.M., J. Vac. Sci. Technol. B10, 131 (1991)Google Scholar
5. Glembocki, O.J., Dagata, J.A., Dobisz, E.E. and Katzer, D.S., Proc. Mat. Res. Soc. 236, 217 (1992) and O.J. Glembocki J.A. Tuchman, K.K. Ko, S.W. Pang, A. Giordana, R. Kaplan and C.E. Stutz, Appl. Phys. Lett., 66, 3054 (1995).Google Scholar
6. Glembocki, O.J., Dagata, J.A., Dobisz, E.A. and Katzer, D.S., Proc. Mat. Res. Soc. 236 217 (1992).Google Scholar
7. Glembocki, O.J., Proc. Soc. Photo-Optical Instrumentation Engineers, 1286, 1 (1990) and references therein.Google Scholar
8. Aspnes, D.E., Phys. Rev. 153, 972 (1967) and R.N. Bhattacharya, H. Shen, P. Parayanthal, F.H. Pollak, T. Coutts and H. Aharoni, Phys. Rev. B37, 4044 (1988).Google Scholar
9. Deeming, T.J., Astrophys. Space Sci., 36, 137 (1975), and G.L. Loumos and T.J. Deeming, Astrophys. Space Sci., 56, 285 (1978).Google Scholar