No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
In this contribution we report on the real-time monitoring of low temperature growth of epitaxial GaxIn1-xP/GaP heterostructures on Si(100) by pulse chemical beam epitaxy, using tertiary butylphosphine (TBP), triethylgallium (TEG), and trimethylindium (TMI) as source materials. Both step-graded and continuously graded heterostructures have been investigated. The composition of the GaxIn1-xP epilayers has been analyzed by various techniques including X-ray diffraction, Rutherford backscattering, Auger, and Raman spectroscopy. Good correlation has been found between X-ray diffraction, RBS, and Vegard's law compositional analysis. We used Ppolarized Reflectance Spectroscopy (PRS) and Laser Light Scattering (LLS) to monitor the growth rate and surface morphology during growth. The information gained by these techniques has been utilized in the improvement of the surface preconditioning as well as to optimize the initial heteroepitaxial nucleation and overgrowth process. We studied the optical response to the compositional changes in the surface reaction layer (SRL) during the exposure of the surface to either sequential or synchronous pulses of TEG and TMI. The cross sectional TEM analysis indicates that the synchronous exposure results in an abrupt GaxIn1-xP/GaP interface while the sequential exposure does not which may suggest a compositionally graded interlayer formation. For heteroepitaxial GaxIn1-xP films on Si, a buffer layer of GaP is found to be necessary for optimum uniformity of the GaxIn1-xP layer. The selective growth of GaxIn1-xP on Si(001) is accessed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.