Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-12T02:23:30.816Z Has data issue: false hasContentIssue false

Glass-Ceramics In The Systems La-Pb-Mn-B-O And La-Pb-Mn-Te-O

Published online by Cambridge University Press:  21 February 2011

E. Gattef
Affiliation:
Higher Institute of Chemical Technology, Sofia-1756, Bulgaria
A. Staneva
Affiliation:
Higher Institute of Chemical Technology, Sofia-1756, Bulgaria
Y. Dimitriev
Affiliation:
Higher Institute of Chemical Technology, Sofia-1756, Bulgaria
Get access

Abstract

Compositions from the systems Pb-Mn-B-O and Pb-Mn-Te-0 are used to synthesize glass-ceramics obtained by solid state reactions and from supercooled melts. By casting on a metal plate or by quenching with the aid of twin rollers the melts are cooling. The glass-crystalline materials are obtained after heating glasses from the combination of PbO-MnO-B203 and PbO-MnO-TeO2 with the addition of La203 from 10 to 50 wt.% and the formation of the crystalline phases is determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Zener, C., Phys. Rev. 82, 403(1951).Google Scholar
2 Jonker, G.H., Physica XXII, 707 (1956).Google Scholar
3 Goodenouph, J.B., J. Appl. Phys., 37, 1415 (1966).Google Scholar
4 Rao, G.V. Subba, Wanklyn, B.M., Rao, C.N.R., J. Phys. Chem. Solids 32, 345 (1971).Google Scholar
5 Rubinchik, Y.S., Prokudina, S.A., Pavluchenko, M.M., Neorg. Materiali 9,1951 (1973).Google Scholar
6 Taguchi, H., Takahashi, Y., Matsumoto, C., Yogyo Kyokai-Shi 88, 566 (1980).Google Scholar
7 Hammouche, A., Siebert, E., Hammou, A., Mat. Res. Bul. 24, 367 (1989)Google Scholar
8 Tihonova, L., Samal, G., Juk, P., Tononian, A., Vecher, A., Neorg. Materiali, 26 (1), 184(1990).Google Scholar
9 Kuo, J.H., Anderson, H.U., Sparlin, D.M., J. Solid State Chem., 87, 55 (1990).Google Scholar
10 Takeda, Y., Nakai, S., Kojima, T., Kanno, R., Imanishi, N., Shen, G., Yamamoto, Os., Mat. Res. Bull. 26, 153 (1991).Google Scholar
11 Morrish, A., Evans, B., Eaton, J., Leung, L., Can. J. Phys. 47, 2691 (1969).Google Scholar
12 Leung, L.K., Morrish, A.H., Searle, C.W., Can. J. Phys., 47, 2697 (1969).Google Scholar
13 Searle, C.W. and Wang, S.T., Can. J. Phys., 47, 2703 (1969).Google Scholar
14 Stefanova, S., Stefanov, S., Gattef, E., Dimitriev, Y., Velkova, V., Proc. “X-ray diffraction methods”. Nesebar (1989) p.l18.Google Scholar
15 Gattef, E., Dimitriev, Y., Staneva, A., Stefanova, S., Electronic and Optoelectronic Materials for the 21st Century, edited by Marshall, J. M., Kirov, N. and Vavrek, A., vol. 2, 1992 (in press).Google Scholar
16 Gattef, E., Dimitriev, Y., Staneva, A., Stefanova, S., presented at the 1992 ACA Meeting and 50th Pitsburgh Diffraction Conference, Pitsburgh, PA, 1992 (unpublished).Google Scholar
17 Johnson, D., Gallagher, P., Schrey, F. and Rodes, W., Amer. Ceram. Bull. 55, 520 (1976).Google Scholar
18 Tejuca, L., J. Less-Comm. Metals, 146, 251 (1989); 146, 261 (1989).Google Scholar
19 Alcock, C.B. and Carberry, J.J., Solid State Ionics, 50, 197 (1992).Google Scholar
20 Schiesel, M., Ivers-Tiffee, E., Wersing, W., in Ceramics Today- Tomorrow's Cearamics. edited by Vincenzini, P., Elsevier Science Publ. B. V., 1991, p.2607.Google Scholar
21 Kertesz, M., Reiss, I., Tannhauser, D.S., Langpape, R., Rohr, F.J., J. Solid State Chem., 42, 125 (1982).Google Scholar
22 Palma, J., Jurado, J., Duran, P., Paskual, C., Bol. Soc. Esp. Ceram. Vidr., 30,472 (1991).Google Scholar
23 Labrinka, J. A., Marques, F.M.B., Frade, J.R., Abrantes, J.C.C, in THIRD EURO-CERAMICS. Duran, P., Feranandez, J.F. EDS, vol. 2, (1993) p. 329.Google Scholar
24 Abrantes, J.C.C., Marques, F.M.B., Frade, J.R., in THIRD EURO-CERAMICS. Duran, P., Feranandez, J.F. EDS, vol. 2, (1993) p. 323.Google Scholar
25 Allancon, C., Bassat, J.M., Riflet, J.C., Loup, J.R, Odier, P., in THIRD EURO-CERAMICS.Duran, P., Feranandez, J.F. EDS, vol. 2, (1993) p. 335.Google Scholar
26 Legros, R., Fau, P., Minchin, H., Metz, R., Lagrange, A., Rousset, A., in Ceramics Today-Tomorrow's Ceramics, edited by Vincenzini, P., Elsevier Science Publ.B.V., 1991, p.2147.Google Scholar
27 Brieu, M., Couderc, J.J., Rousset, A., Legros, R., J. Europian Ceram. Society, 11, 171 (1993).Google Scholar
28 Rousset, A., Lagrange, A., Brieu, M., Couderc, J.J., Legros, R., Journal de Physique III,3,83(1993).Google Scholar
29 K. Inomata, K., Hashimoto, S., Nakamura, S., Jap. J. Appl. Phys., 27, L883 (1988).Google Scholar
30 Matsubara, E., Waseda, Y., Hashimoto, S., Inomata, K., Phys. Stat. Sol., (a) 117, Kl (1990).Google Scholar
31 Haupt, L., Schunemann, J., Barner, K., Solid State Commun., 72, 1093 (1989).Google Scholar
32 Kasai, M., Ohno, T., Kanke, Y., Kozono, Y., Hanazono, M., Sugita, Y., Jap. J. Appl. Phys., 29, L 2219 (1990).Google Scholar
33 Taguchi, H., Matsuda, D., Nagao, M., J. Am. Ceram. Soc, 75, 201 (1992).Google Scholar
34 Taguchi, H., Matsuda, D., Nagao, M., J. Mat. Sci. Lett., 12, 891 (1993).Google Scholar
35 Sammes, N.M. and Phillipps, M.B., J. Mat. Sci. Lett., 12, 829 (1993).Google Scholar
36 Syskakis, E., Bilger, S., Forthman, R., Naoumidis, A., THIRD EURO-CERAMICS. Duran, P., Feranandez, J. F. EDS, vol.1, (1993), p. 769.Google Scholar