Published online by Cambridge University Press: 26 February 2011
Understanding the boron effect in Ni3Al currently centers on determining thestructure of the region near grain boundaries, especially the presence of a disordered γ phase. In this study, a series of alloys was examined by transmission electron microscopy (TEM) as a function of aluminum level, boron level, and cooling rate for thepresence of any grain boundary phases. The base alloy series all contained 0.5 at. % Hf. At 21.5 at. % Al,γ formed in the matrix as expected. However, in slowly cooled specimens with 22 and 22.5% Al, a second phase with thicknesses from 25 to 50 nm formed on some of the grain boundaries. At higher aluminum levels no evidence of any second phase was observed. The minimum width of grain boundary images formed by normal diffraction contrast imaging was generally 0.5 to 1 nm for grain boundaries that presumably had no second phase and were parallel to the electron beam. Therefore, a second phase with a thickness of 1 nm or less would not be discernable by TEM. High resolution Z-contrast imaging by scanning TEM of a very low angle boundary in directionally solidified (DS) material also showed no evidence of disordering, but did show a surprising amount of non-planarity of the boundary.
Whereas slower cooling rates might be expected to aid the formation of any grain boundary phase and thereby increase the ductility, the ductility was slightly lower for the more slowly cooled alloys than for the furnace cooled alloys. From 21.5 to 24% Al, the tensile elongations remain fairly constant with values ranging from 45 to 52%. Above 24%, the ductility drops off rapidly but is still much higher for the boron-doped material than for the undoped material. At 25.2% Al, the ductility is still 4% as compared to essentially zero for undoped material. Therefore the ductility improvements in boron-doped Ni3Al do not require the presence of any grain boundary disordered phases discernable by TEM.