Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T10:11:50.762Z Has data issue: false hasContentIssue false

Graphene Devices Processing Using Direct Writing Laser Lithography and Electrical Properties Characteristics

Published online by Cambridge University Press:  01 February 2011

Jorge Augusto Leon
Affiliation:
jleoner@gmail.com, Universidade Federal de Minas Gerais, Department of Physics, Belo Horizonte, Brazil
Elmo Salomão Alves
Affiliation:
elmo@fisica.ufmg.br, Universidade Federal de Minas Gerais, Department of Physics, Belo Horizonte, Minas Gerais, Brazil
Daniel Cunha Elias
Affiliation:
dcelias@fisica.ufmg.br, Universidade Federal de Minas Gerais, Department of Physics, Belo Horizonte, Minas Gerais, Brazil
Leandro Malard Moreira
Affiliation:
lmalard@fisica.ufmg.br, Universidade Federal de Minas Gerais, Department of Physics, Belo Horizonte, Minas Gerais, Brazil
Tiago Campolina Barbosa
Affiliation:
tiagocampb@yahoo.com.br, Universidade Federal de Minas Gerais, Department of Physics, Belo Horizonte, Minas Gerais, Brazil
Marcos Asunção Pimenta
Affiliation:
mpimenta@fisica.ufmg.br, Universidade Federal de Minas Gerais, Department of Physics, Belo Horizonte, Minas Gerais, Brazil
Flavio Orlando Plentz
Affiliation:
plentz@fisica.ufmg.br, Universidade Federal de Minas Gerais, Department of Physics, Belo Horizonte, Minas Gerais, Brazil
Get access

Abstract

In this work, we establish the use of lithography technique by laser direct writing for fabricating bilayer graphene devices. This technique, which is based on direct laser writing on graphene coated with a photoresist is simple to implement, versatile, and capable of achieving good throughput. Double-layer graphene flakes were obtained by micromechanical cleavage of graphite producing large graphene samples up to 40μm in size. The presence of a bilayer of graphene on SiO2/Si substrate was verified by optical microscopy and resonant Raman spectroscopy. We have measured the four-terminal resistance as a function on the back-gate voltage and found initially p-type doping in graphene, but annealing inside cryostat at 127C° in He atmosphere, the samples become n-type. Our measurements show electron mobility reached values around ˜1,900 cm2/V.s at high electron concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blake, P., Hill, E. W., Castro Neto, A. H., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., Geim, A. K., Applied Physics Letters 91, 063124 (2007).Google Scholar
2. Novoselov, K. S., Geim, A. K., Morosov, S. V., Jiang, D., Kaltnelson, M. I., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A., Nature 438, 197 (2005)Google Scholar
3. Shedin, F., Geim, A. K., Morosov, S. V., Hill, E. W., Blake, P., Kaltnelson, M. I., and Novoselov, K. S., Nature Materials 6, 652655 (2007).Google Scholar
4. Romero, H. E., Shen, N., Jhosi, P., Gutierrez, H. R., Tadigadapa, S. A., Sofo, J. O., and Eklund, P. C., ACSNANO 2(10), 20372044 (2008).Google Scholar
5. Adam, S. and Das Sarma, S., Physics Review B 77, 115436 (2008).Google Scholar
6. Morosov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., and Geim, A. K., Physical Review Letters 100, 016602 (2008).Google Scholar
7. Chen, J. H, Jang, C., Xiao, S., Ishigami, M., and Fuhrer, M. S., Nature Nanotechnology 3, 206 (2008).Google Scholar