Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T09:32:37.022Z Has data issue: false hasContentIssue false

Growth, Structure and magnetism of Cobalt-Platinum Ultrathin Films and Sandwiches

Published online by Cambridge University Press:  03 September 2012

J.P. Deville
Affiliation:
I.P.C.M.S. Groupe “Surfaces-Interfaces” - UMR 046 du CNRS 4, rue Blaise Pascal, F-67070 STRASBOURG Cedex, France
A. Barbier
Affiliation:
I.P.C.M.S. Groupe “Surfaces-Interfaces” - UMR 046 du CNRS 4, rue Blaise Pascal, F-67070 STRASBOURG Cedex, France
C. Boeglin
Affiliation:
I.P.C.M.S. Groupe “Surfaces-Interfaces” - UMR 046 du CNRS 4, rue Blaise Pascal, F-67070 STRASBOURG Cedex, France
B. Carriere
Affiliation:
I.P.C.M.S. Groupe “Surfaces-Interfaces” - UMR 046 du CNRS 4, rue Blaise Pascal, F-67070 STRASBOURG Cedex, France
Get access

Abstract

Cobalt-platinum alloys and multilayers are now well known for their potentialities in Magneto-optical recording Media. The growth of ultrathin layers and sandwiches is thought to be useful to find the relationship between the structural and magnetic properties at an atomic level. Low Energy Electron Diffraction (LEED) and Auger spectroscopy (AES) are used here to study the crystallography and the growth modes of Pt on Co (0001) surfaces. Co/Pt/Co sandwiches are also built and investigated by the same Methods. At room temperature we show the evidence of a good epitaxy of platinum on the Co (0001) surface leading to the possibility of obtaining ordered Co/Pt/Co sandwiches. Annealings at moderate temperatures lead to an epitaxial alloy formation. Auger results show that alloying indeed induces a magnetic moment on platinum atoms. This could explain the magnetic properties already observed in CO/Pt (111) Multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hashimoto, S., Maesaka, A., Fujimoto, K. and Bessho, K., Appl. Surf. Sci., in pressGoogle Scholar
1. Koote, A., Haas, C. and de Groot, R.A., J. Phys. Condens. Matter 3, 1133 (1991)Google Scholar
2. Lee, C.H., Farrow, R.F.C., Lin, C.J., Marinero, E.E. and Chien, C.J., Phys. Rev. B 42, 11384, 1990 Google Scholar
3. Néel, L., J. Phys. Rad. 15, 255 (1954)Google Scholar
4. Weiler, D., Brandie, H., Gorman, G., Lin, C. J. and Notaris, H., Appl. Phys. Lett. 61, 2726 (1992)Google Scholar
5. Weller, D., Brandie, H. and Chappert, C., J. Magn. Magn. Mat. 121 (1993), in pressGoogle Scholar
6. Argile, C. and Rhead, G.E., Surf. Sci. Rep. 10, 277 (1989)Google Scholar
7. Barbier, A., Da Costa, V., Ohresser, P., Carrière, B. and Deville, J.P., J. Magn. Magn. Mat. 121, 73 (1993)Google Scholar
8. Stair, P.C., Kamilska, T.J., Kesmodel, L.L. and Somorjai, G.A., Phys. Rev. B 11, 623 (1975)Google Scholar
9 de la Figuera, J., Pietro, J.E., Ocal, C. and Miranda, R., Phys. Rev. B47 (in press)Google Scholar
10 McGee, N.W.E., Johnson, M.T., de Vries, J.J., Stegge, Jann de, J. Appl. Phys. 73, 2424 (1993)Google Scholar
11. Weber, W., Wesner, D.A., Hartmann, D., Effner, U.A. and Güntherodt, G., J. Magn. Magn. Mat. 121, 156 (1993)Google Scholar