Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T19:30:59.523Z Has data issue: false hasContentIssue false

Helium-induced porous layer formation in Silicon.

Published online by Cambridge University Press:  28 February 2011

A. Van Veen
Affiliation:
IRI, Delft University of Technology, Mekelweg 15, 2926 JB Delft, The Netherlands.
C.C. Griffioen
Affiliation:
IRI, Delft University of Technology, Mekelweg 15, 2926 JB Delft, The Netherlands.
J.H. Evans
Affiliation:
Materlals Development Division, Harwell Laboratory, Oxon, 0X11 ORA, U.K.
Get access

Abstract

The annealing behaviour of helium bubbles formed by ambient temperature 10 keV helium implantation into silicon has been studied using transmission electron microscopy (TEM) and helium desorption spectroscopy (HDS). Although the TEM results indicated conventional bubble annealing processes due to bubble migration and coalescence, the HDS data demonstrated that helium can permeate out of bubbles in silicon around 1000K to leave behind empty cavities, thus giving a porous layer coincident with the original helium implant profile.

The addition of a low dose of implanted oxygen to the silicon-helium samples has been shown to strongly improve the stability of the porous layer, at least up to 1300K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Paszti, F., Hajdu, Cs. et al. , Nucl. Instr. and Methods B7/8, 371 (1985).CrossRefGoogle Scholar
2 Matzke, Hj., Radiation Effects 3, 93 (1970).CrossRefGoogle Scholar
3 Williams, J.S. and Grant, W.A., Applications of Ion Beams to Materials, , Warwick 1975, Inst. Phys. Conf. Series 28, 31 (1976).Google Scholar
4 Cullis, A.G., Seidel, T.E. and Meek, R.L., J. Appl. Physics 49, 5188 (1978).Google Scholar
5 Revesz, P., Wittmer, M., Roth, J. and Meyer, J. W., J. Appl. Physics 49, 5199 (1978).CrossRefGoogle Scholar
6 Wittmer, M., Roth, J., Revesz, P. and Meyer, J. W., J. Appl. Physics 49, 5207 (1978).Google Scholar
7 Griffioen, C.C., Evans, J.H., Jong, P.C. de and Veen, A. van, Nucl. Instr. and Methods B27, 417 (1987).Google Scholar
8 Wieringen, A. van and Warmoltz, N., Physica 22, 849 (1956).Google Scholar
9 Bangert, U., Goodhew, P.J., Jeynes, C. and Wilson, I.H., J. Phys. D. 19, 589 (1986).Google Scholar
10 Evans, J.H., Veen, A. van and Griffioen, C.C., Nucl. Instr. and Methods B28, 360 (1987).CrossRefGoogle Scholar
11 Templier, C., Boubeker, B., Garem, H., Mathe, E.L. and Desoyer, J.C., Phys. Stat. Sol.(a) 92, 511 (1985).CrossRefGoogle Scholar
12 Evans, J.H. and Mazey, D.J., J. Nucl. Mater. 138, 176 (1986).CrossRefGoogle Scholar
13 Templier, C., Garem, H. and Riviere, J.P., Phil. Mag. A 53, 667 (1986).CrossRefGoogle Scholar
14 Evans, J.H., Nucl. Instr. and Methods B18, 16 (1986).Google Scholar
15 Veen, A. van, Materials Science Forum 15 18, 3 (1987).Google Scholar
16 Marachoff, N., Perryman, L. and Goodhew, P.J. J. Nucl. Mater. 149, 286 (1987).Google Scholar
17 Ommen, A.H. van, Koek, B.H. and Viegers, M.P.A., Appl. Phys. Letters 49, 628 (1986).Google Scholar
18 Nesbit, L., Slusser, G., Frenette, R. and Halbach, R., J. Electrochem. Soc, 133, 1186 (1986).CrossRefGoogle Scholar
19 Gaworzewki, P. and Schmalz, K., Phys. Stat. Sol.(a) 58, K223 (1980).Google Scholar
20 Collins, R.W., Yacobi, B.G., Jones, K.M and Tsuo, Y.S., J. Vac. Science and Technology A4, 153 (1986).Google Scholar
21 Slaoui, A., Barhdadi, A., Muller, J.C. and Sifert, P., Appl. Phys. A39, 159 (1986).Google Scholar