Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T14:20:45.107Z Has data issue: false hasContentIssue false

HgCdTe/CdTe Multiple Quantum Wells: Growth, Stability, and Optical Properties

Published online by Cambridge University Press:  25 February 2011

R.D. Feldman
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
R.F. Austin
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
M.N. Islam
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
C.E. Soccolich
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
Y. Kim
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
A. Ourmazd
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
Get access

Abstract

We have grown HgCdTe/CdTe multiple quantum wells by molecular beam epitaxy which show room temperature photoluminescence and sharp absorption steps at mid-infrared wavelengths. Quantitative chemical mapping, performed by transmission electron microscopy, indicates minimal interdiffusion during growth. Annealing experiments performed at higher temperatures show that the interdiffusion coefficient is a strong function of the depth of the interface below the surface. Absorption spectra have been accurately modeled with a square well/envelope function approach. The films have been used to passively mode lock color center lasers and produce pulses as short as 120 fsec near 2.7 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Faurie, J.P., Reno, J., Sivananthan, S., Sou, I.K., Chu, X., Boukerche, M., and Wijewarnasuriya, P.J., J. Crystal Growth 27, 940 (1986).Google Scholar
2. Meyer, J.R., Hoffman, C.A., and Bartoli, F.J., in Narrow Gap Semiconductors and Related Materials, edited by Seiler, D.G. and Littler, C.L. (Adam Hilger, Bristol, England, 1990), pp. S90–S99.Google Scholar
3. Schulman, J.N. and McGill, T.C., Appl. Phys. Lett. 34, 663 (1979).CrossRefGoogle Scholar
4. Reno, J., Sporken, R., Kim, Y.J., Hsu, C., and Faurie, J.P., Appl. Phys. Lett. 51, 1545 (1987).Google Scholar
5. Cheung, J.Y., Nizawa, G., Moyle, J., Ong, N.P., Paine, B.M., and Vreeland, T. Jr., J. Vac. Sci. Technol. A 4, 2086 (1986).CrossRefGoogle Scholar
6. Hails, J.E., Russell, G.J., Brinkman, A.W., and Woods, J., J. Crystal Growth 79, 940 (1986).Google Scholar
7. Arias, J., Shin, S.H., Cheung, J.T., Chen, J.-S., Sivananthan, S., Reno, J., and Faurie, J.P., J. Vac. Sci. Technol. A 5, 3133 (1987).Google Scholar
8. Feldman, R.D., Oron, M., Austin, R.F., and Opila, R.L., J. Appl. Phys. 63, 2872 (1988).Google Scholar
9. Okazaki, T. and Shogenji, K., J. Phys. Chem. Solids 36, 439 (1975).Google Scholar
10. Hornig, R.D. and Staudenmann, J.-L., Appl. Phys. Lett. 49, 1590 (1986).Google Scholar
11. Feldman, R.D., Nakahara, S., Austin, R.F., Boone, T., Opila, R.L., and Wynn, A.S., Appl. Phys. Lett. 51, 1239 (1987).Google Scholar
12. Feldman, R.D., Nakahara, S., Opila, R.L., Austin, R.F., and Boone, T., J. Crystal Growth 98, 581 (1989).Google Scholar
13. Harris, K.A., Myers, T.H., Yanka, R.W., Mohnkern, L.M., Green, R.W., and Otsuka, N., J. Vac. Sci. Technol. A 8, 1013 (1990).CrossRefGoogle Scholar
14. Benz, R.G. II, Wagner, B.K., and Summers, C.J., J. Vac. Sci. Technol. A 8, 1020 (1990).Google Scholar
15. Ourmazd, A., Tsang, W.T., Rentschler, J.A., and Taylor, D.W., Appl. Phys. Lett. 50, 1417 (1987).Google Scholar
16. Feldman, R.D., Cesar, C.L., Islam, M.N., Austin, R.F., DiGiovanni, A.E., Shah, J., Spitzer, R., and Orenstein, J., J. Vac. Sci. Technol. A 7, 431 (1989).Google Scholar
17. Kim, Y., Ourmazd, A., Feldman, R.D., Rentschler, J.A., Taylor, D.W., and Austin, R.F., in Advances in Materials, ProcessinQ and Devices in III-V Compound Semiconductors, edited by Sadana, D.K., Eastman, L.E., and Dupuis, R. (Mater. Res. Soc. Proc. 144, Pittsburgh, PA 1986) pp. 163168.Google Scholar
18. Ourmazd, A., Taylor, D.W., Cunningham, J., and Tu, C.W., Phys. Rev. Lett. 62, 933 (1989).Google Scholar
19. Kim, Y., Ourmazd, A., Bode, M., and Feldman, R.D., Phys. Rev. Lett. 63, 636 (1989).Google Scholar
20. Kim, Y., Ourmazd, A., Malik, R.J., and Rentschler, J. A., in Atomic Scale Structure of Interfaces, edited by Briggins, R.D., Fenstra, R.M., and Gibson, J.M. (Mater. Res. Soc. Proc. 159, Pittsburgh, PA 1990) pp. 351355.Google Scholar
21. Cesar, C.L., Islam, M.N., Feldman, R.D., Austin, R.F., Chemla, D.S., West, L.C., and DiGiovanni, A.E., Appl. Phys. Lett. 56, 283 (1989).Google Scholar
22. Bastard, G. and Brum, J., IEEE J. Quantum Electron. OE- 22, 1625 (1986).Google Scholar
23. Cesar, C.L., Islam, M.N., Feldman, R.D., Spitzer, R., Austin, R.F., DiGiovanni, A.E., Shah, J., and Orenstein, J., Appl. Phys. Lett. 54, 745 (1989).Google Scholar
24. Guldner, Y., Bastard, G., Vieren, J.P., Voos, M., Faurie, J.P., and Million, A., Phys. Rev. Lett. 51, 907 (1983).Google Scholar
25. Chow, D.H., McCaldin, J.O., Bonnefoi, A.R., McGill, T.C., Sou, I.K., and Faurie, J.P., Appl. Phys. Lett. 51, 2230 (1987).Google Scholar
26. Sporken, R., Sivananthan, S., Faurie, J.P., Ehlers, D.H., Fraxedas, J., Ley, L., Pireaux, J.J., and Caudano, R., J. Vac. Sci. Technol. A. 7, 427 (1989).Google Scholar
27. Chemla, D.S., Miller, D.A.B., Smith, P.W., Gossard, A.C., and Wiegman, W., IEEE J. Quantum Electronics OE- 20, 265 (1984).Google Scholar
28. Wegener, M., I. Bar-Joseph, Sucha, G., Islam, M.N., Sauer, N., Chang, T.Y., and Chemla, D.S., Phys. Rev. B 39, 12794 (1989).Google Scholar
29. Cesar, C.L., Islam, M.N., Soccolich, C.E., Feldman, R.D., Austin, R.F., and German, K.R., Optics Letters 15, 1147 (1990).Google Scholar
30. Islam, M.N., Sunderman, E.R., Soccolich, C.E., Bar-Joseph, I., Sauer, N., Chang, T.Y., and Miller, B.I., IEEE J. Quantum Electronics OE- 25, 2454 (1989).CrossRefGoogle Scholar