Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:40:19.205Z Has data issue: false hasContentIssue false

High Durability Glass-Fiber Reinforced Modified Cementitious Matrix

Published online by Cambridge University Press:  16 February 2011

J. Thiery
Affiliation:
Centre de Recherches de Pont-A-Mousson - BP 109 54704 - PONT-à-MOUSSON CEDEX - FRANCE
A. Vautrin
Affiliation:
Département Mécanique et matériaux Ecole des Mines de Saint-Etienne 158 Cours Fauriel 42023 - SAINT ETIENNE - CEDEX 2 - FRANCE
J. Francois-Brazier
Affiliation:
Centre de Recherches de Pont-A-Mousson - BP 109 54704 - PONT-à-MOUSSON CEDEX - FRANCE
Get access

Abstract

In AR-GFRC growth of hydration products around the filaments plays a dominant role in inducing embrittlement of the fibers and loss of toughness of the composites.

The purpose of this paper is to present the way to limit the anchorage of the fibers in the matrix and to obtain a long term flexural strength of 30 MPa and an ultimate strain of 0,7 %. The improvement of the matrix is obtained by using selected metakaolinites and acrylic polymers in order to optimize the nature of the hydrates in the interface between the fibers and the matrix.

The mecanical properties and durability behaviours are reviewed using three accelerated ageing tests based on warm water, wet-dry cycles and freeze-thaw cycles. The toughness indices proposed by Shah, Ludirdja and Daniel [12] are calculated, pointing out the improvements of toughness and durability of the new V~trotex-Saint-Gobain AR-GFRC system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Young, J.F., 1985, “Aspects of cement hydration relevant for the manufacture and performance of GFRC”, Proceeding of the symposium on durability of class fiber reinforced concrete, 12–15 November, Chicago, edited by Diamond S., prestressed Concrete Institute, 1986., p. 78.Google Scholar
(2) Bentur, A., 1985, “Mechanisms of potential embrittlement and strength loss of GFRC”, Proc. Int. Conf. Durability of GFRC, Chicago, p. 109.Google Scholar
(3) Bartos, P., 1985, “Effects of changes in fiber strentgh and bound characteristics due to ageing on fracture mechanism of GFRC”, Proc. Int. Conf. Durability of GFRC, Chicago, p. 136.Google Scholar
(4) Proctor, B.A., 1987, “The properties and performances of Polymer Modified GRC”, Proc. Int. Cona. GRCA, Edinburgh, p. 79.Google Scholar
(5) Bijen, J., 1987, “Curing of GRC”, Proc. Int. Cone. GRCA, Edinburgh, p. 71.Google Scholar
(6) Daniel, J.I., 1985, “Durability of GFRC systems”, Proc. Int. Conf. Durability of GFRC, Chicago, p. 174.Google Scholar
(7) Bijen, J., 1985, “A survey of new developments in glass composition, coatings and matrices to extend service lifetime of GFRC”, Proc. Int. Conf. Durability of GFRC, Chicago, p. 251.Google Scholar
(8) Jacobs, M.J.N., 1985, “Strain capacity as a design criterion”, Proc. Int. Conf. Durability of GFRC, Chicago, p. 327.Google Scholar
(9) Largent, R., 1978, “Essai chapelle modifiée”, Bulletin de liaisons des Laboratoires des Ponts et Chaussées, N° 93, janvieréfévrier, p. 63.Google Scholar
(10) Thiéry, J. and Genis, A., 1989, “High durability glass cement composites: new vetrotex system”, Proceedings of the international congress GRC 89 – 7th biennal conaress of the GRCA, 25–28 September, Maastricht (netherlands), published by GRCA.Google Scholar
(11) Johnston, C.D., 1982, “Definition and measurement of flexural toughness parameter for steel fiber reinforced concrete”, Cement Concrete and Agereaates, CCAGDP Vol.4, N°2, winter, pp. 5360.Google Scholar
(12) Shah, S.P., Ludirdja, D. and Daniel, J.I., 1987, “Toughness of glass fiber reinforced concrete panels subjected to accelerated ageing”, PCI Journal, September-October 1987 Vol.32, N°5, pp. 8299.Google Scholar
(13) Litherland, K.L. and Proctor, B.A., 1986, “Predicting the long term strength of glass fibre cement composites”, Proceedings of the RILEM symposium FRC 86 – third international symposium on developments in fibre, reinforced cement and concrete, 13–17 July, Sheffield, edited by , Swamy R.N., Wagstaffe, R.L.& Oakley, D.R., 1986, Vol.2.Google Scholar
(14) Majumbar, A.J., Singh, B., Langley, A.A. and Ali, M.A., 1980, “The durability of glass fibre cement - the effect of fibre length and content”, Journal of Materials Science Vol.15, N° 5, pp. 10851096.Google Scholar
(15) Venuat, M., 1972, “La carbonatation des bétons - Le phénomène et ses consequences pratiques”, Le Moniteur, 27 mai 1972, pp. 201205.Google Scholar
(16) Venuat, M., 1976, “La carbonatation des batons”, Le Moniteur, 21 aoat 1976, pp. 6062.Google Scholar
(17) Venuat, M., 1978, “La commission technique 16-C / Carbonatation”, Matériaux et Constructions Vol.11, N°62, pp. 142146.CrossRefGoogle Scholar
(18) Venuat, M. and Alexandre, J., 1968, “De la carbonatation du béton”, Publication du CERILH N° 195, or Matériaux Ciments et Bétons, extract from N° 638, 639 and 640, respectively novembre 1968, décembre 1968 et janvier 1969.Google Scholar
(19) Cohen, M.D. and Constantiner, D., 1985, “Morphological developments of high and low alkali cement pastes at the glass fiber-cement interface”, Proc. Int. Conf. Durability of GFRC, Chicago, pp. 158–173.Google Scholar
(20) , Bentur A., 1985, “Mechanisms of potential embrittlement and strength loss of glass fiber reinforced cement composites”, Proc. Int. Conf. Durability of GFRC, Chicago, pp. 109–123.Google Scholar