Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:45:26.167Z Has data issue: false hasContentIssue false

High Quality Si and Sil-xGex, Films and Heterojunction Bipolar Transistors Grown by Rapid Thermal Chemical Vapor Deposition (RTCVD)

Published online by Cambridge University Press:  25 February 2011

M. L. Green
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
D. Brasen
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
H. Temkin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
V. C. Kannan
Affiliation:
† AT&T Bell Laboratories, Allentown, Pa. 18103
H. S. Luftman
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

Rapid thermal chemical vapor deposition (RTCVD) is a processing technique that results from the combination of radiant heating lamps and a CVD chamber. It is the ultimate cold-wall CVD reactor and allows one to clean wafers in-situ and immediately thereafter deposit epitaxial layers. Very thin layers (<100 Å) can be deposited by either gas or lamp power switching. We report here the growth of high quality Si and Si-Ge layers, both intrinsic and in-situ doped, and the in-situ growth of a heterojunction bipolar transistor. These HJBT's show gains as high as 350 and are promising as microwave transistors. RTCVD processing is a production-worthy technology that will play an important role in the manufacture of future heterostructural devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Green, M. L., Brasen, D., Luftman, H. and Kannan, V. C., J. Appl. Phys. 65, 2558, 1989.CrossRefGoogle Scholar
(2) Sturm, J. C., Gronet, C. M. and Gibbons, J. F., J. Appl. Phys., 59, 4180, 1986.CrossRefGoogle Scholar
(3) Gronet, C. M., King, C. A. and Gibbons, J. F., Mat. Res. Soc. Symp. Proc. 71, 107, 1986.CrossRefGoogle Scholar
(4) King, C. A., Hoyt, J. L., Noble, D. B., Gronet, C. M., Gibbons, J. F., Scott, M. P., Kamins, T. I. and Laderman, S. S., IEEE Elec. Dev. Lett., 10, (4), 159 (1989).CrossRefGoogle Scholar
(5) King, C. A., Hoyt, J. L., Gronet, C. M., Gibbons, J. F., Scott, M. P. and Turner, J., IEEE Elec. Dev. Lett., 10, (2), 52 (1989).Google Scholar
(6) Gibbons, J. F., Gronet, C. M. and Williams, K. E., Appl. Phys. Lett., 47, 721, 1985.Google Scholar
(7) Lang, D. V., People, R., Bean, J. C. and Sergent, A. M., Appl. Phys. Lett., 47, 1333, 1985.Google Scholar
(8) Fiory, A. T., Bean, J. C., Feldman, L. C. and Robinson, I. K., J. Appl. Phys., 56, 1227, 1984.Google Scholar
(9) Kern, W. and Puotinen, D. A., RCA Rev. 31, 187, 1970.Google Scholar
(10) Epitaxial Silicon Technology, ed. Baliga, B. J., Academic Press, Orlando, Fl., 1986.Google Scholar
(11) Meyerson, B. S., Urarn, K. J. and LeGoues, F. K., Appl. Phys. Lett., 53, 2555, 1988.Google Scholar
(12) Temkin, H. et al., this volume, p.Google Scholar
(13) Physics and Technology of Semiconductor Devices, Grove, A. S., J. Wiley and Sons, New York, 1967.Google Scholar