Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T15:14:13.290Z Has data issue: false hasContentIssue false

High rate deposition of cluster-suppressed amorphous silicon films deposited using a multi-hollow discharge plasma CVD

Published online by Cambridge University Press:  31 January 2011

Kazunori Koga
Affiliation:
koga@ed.kyushu-u.ac.jp
Hiroshi Sato
Affiliation:
h.sato@plasma.ed.kyushu-u.ac.jp, Kyushu University, Department of Electronics, Fukuoka, Japan
Yuuki Kawashima
Affiliation:
y.kawashima@plasma.ed.kyushu-u.ac.jp, Kyushu University, Department of Electronics, Fukuoka, Japan
William Makoto Nakamura
Affiliation:
w.nakamura@plasma.ed.kyushu-u.ac.jp, Kyushu University, Department of Electronics, Fukuoka, Japan
Masaharu Shiratani
Affiliation:
siratani@plasma.ed.kyushu-u.ac.jp, Kyushu University, Department of Electronics, Fukuoka, Japan
Get access

Abstract

We have examined effects of gas velocity and gas pressure on a deposition rate of hydrogenated amorphous silicon (a-Si:H) films and on a volume fraction of clusters in the films using a multi-hollow discharge plasma CVD method. The maximum deposition rate realized for each pressure exponentially increases with decreasing the pressure from 1.0 Torr to 0.1 Torr, whereas the volume fraction of clusters very slightly increases with increasing the deposition rate. Based on the results, we have succeeded in depositing highly stable a-Si:H films of 4.9×1015cm-3 in a stabilized defect density at a rate of 3.0nm/s using the method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Staebler, D.L. and Wronski, C.R. Appl. Phys. Lett. 31, 292(1977).Google Scholar
2 Schropp, R.E.I. and Zeman, M. Amorphous and Microcrystalline Silicon Solar Cells, 99 (1998 Boston: Kluwer Academic Publishers).Google Scholar
3 Shiratani, M. Koga, K. Kaguchi, N. Bando, K. and Watanabe, Y. Thin Solid Films, 506-507, 17(2006).Google Scholar
4 Shiratani, M. Maeda, S. Koga, K. Watanabe, Y. Jpn. J. Appl. Phys. 39, 287(2000).Google Scholar
5 Koga, K. Matsuoka, Y. Tanaka, K. Shiratani, M. Watanabe, Y. Appl. Phys. Lett. 77, 196(2000).Google Scholar
6 Shiratani, M. Watanabe, Y. Rev. of Laser Eng. 26,449(1998).Google Scholar
7 Watanabe, Y. Harikai, A. Koga, K. and Shiratani, M. Pure Appl. Chem., 74, 483(2002).Google Scholar
8 Koga, K. Inoue, T. Bando, K. Iwashita, S. Shiratani, M. and Watanabe, Y. Jpn. J. Appl. Phys. 44, L1430(2005).Google Scholar
9 Nakamura, W.M. Miyahara, H. Sato, H. Matsuzaki, H. Koga, K. and Shiratani, M. IEEE Trans. Plasma Sci. 36, 888(2008).Google Scholar
10 Nakamura, W.M. Miyahara, H. Koga, K. and Shiratani, M. J. Phys.: Conf. Series 100, 082018(2008).Google Scholar
11 Sato, H. Kawashima, Y. Tanaka, M. Koga, K. Nakamura, W.M. and Shiratani, M. Journal of Plasma and Fusion Research Series 8, 1435(2009).Google Scholar
12 Matsuda, A. and Tanaka, K. J. Appl. Phys. 60, 2351(1986).Google Scholar
13 Perrin, J. Takeda, Y. Hirano, N. Takeuchi, Y. and Matsuda, A. Surf. Sci. 210, 114(1989).Google Scholar