Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T16:35:48.516Z Has data issue: false hasContentIssue false

High Resolution X-Ray Reciprocal Space Mapping of Wavy Layers

Published online by Cambridge University Press:  10 February 2011

P. Kidd
Affiliation:
Department of Physics, Queen Mary and Westfield College, University of London, London, El, 4NS, UK, p.kidd@qmw.ac.uk
P. F. Fewster
Affiliation:
Philips Research Laboratories, Cross Oak Lane, Redhill, RH1 5HA, UK, fewster@prl.research.philips.com
Get access

Abstract

We apply the technique of High Resolution X-ray Reciprocal Space Mapping (HRRSM) to the study of wavy layers in InGaAs multilayer thin films on InP substrates. By accurately measuring the positions of the layer Bragg peaks in reciprocal space we obtain measurements of the compositions and residual coherency strains in the layers. We discuss the contributions to the diffuse scatter around the Bragg peaks from factors such as lattice tilts and interface roughness. By modelling the shapes of the diffraction profiles we obtain measurements of mosaic block size both perpendicular and parallel to the multilayer/substrate interface. We conclude that the wavy interface morphology arises predominantly from layer thickness variations rather than lattice tilts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fewster, P. F., Rep. Prog. Phys. 59, (1996) p. 13391407 Google Scholar
2. Wie, C. R., Mat. Sci. and Eng. R13 (1994) p. 156 Google Scholar
3. Holý, V. and Baumbach, T., Phys. Rev. B, 48 (1994) p. 10668 Google Scholar
4. van der Menve, J. H., J. Appl. Phys. 34 (1963) p. 117 Google Scholar
5. Matthews, J. W. and Jesser, W. A., Acta Metallurgica 15 (1967) p. 595600 Google Scholar
6. Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N. and Le Roux, G., Appl. Phys. Lett. 47, (1985) p. 1099 Google Scholar
7. Guha, S., Madhukar, A. and Rajkumar, K. C., Appl. Phys. Lett. 57, (1990) p. 2110 Google Scholar
8. Wang, G. W., Appl. Phys. Lett. 59 (1991) p. 573575 Google Scholar
9. Frank, F. C. and van der Merwe, J. H., Proc. R. Soc. A198 (1949) p. 216 Google Scholar
10. van der Merwe, J. H., Critical Reviews in Solid State Physics, 17 (1991) p. 187209 Google Scholar
11. Nix, W., Metallurgical Transactions A, 20A, (1989) p. 22172245 Google Scholar
12. Baker, S. P. and Nix, W. D., J. Mater. Res., 9, (1994) p. 31313144 Google Scholar
13. Dahlgren, S. D., Metallurgical Transactions A, 8, (1977) p. 347351 Google Scholar
14. Brenchley, M. E., Dunstan, D. J., Kidd, P. and Kelly, A. in Layered Materials for Structural Applications edited by Lewandowski, J. J., Ward, C. H., Hunt, W. H. Jr, and Jackson, M. R. (Mater. Res. Soc. Proc. 434, Pittsburgh, PA, 1996) p. 147152 Google Scholar
15. Brenchley, M. E., Hopkinson, M., Kelly, A., Kidd, P. and Dunstan, D. J., submitted to Phys Rev Lett. Dec 1996.Google Scholar
16. Halliwell, M. A. G., Advances in X-ray Analysis 33 edited by Barrett, C. S. et al. (Plenum Press, New York 1990) p. 6166 Google Scholar
17. Hornstra, J. and Bartels, W. J., Journal of Crystal Growth 44 (1978) p. 513517 Google Scholar
18. Bartels, W. J. and Nijman, W., Journal of Crystal Growth 44 (1978) p. 518525 Google Scholar
19. Fewster, P. F. and Curling, C. J., J. Appl. Phys. 62 (1987) p. 41544158 Google Scholar
20. Fewster, P. F. and Andrew, N. L., J. Appl. Phys. 74 (1993) p31213125 Google Scholar
21. Data in Science and Technology: semiconductors, edited by Madelung, O. (Springer Verlag, Berlin 1991)Google Scholar
22. Ponchet, A., Rocher, A., Ougazzaden, A. and Mircea, A., J. Appl. Phys. 75 (1994) p. 78817883 Google Scholar
23. Ponchet, A., Le Corre, A., Godefroy, A., Salaun, S. and Poudoulec, A., J. Crystal Growth, 153 (1995) p. 7180 Google Scholar
24. Ponchet, A., Rocher, A., Emery, J.-Y., Stark, C., and Goldstein, L., J. Appl. Phys. 77 (1995) p. 19771984, and J. Appl. Phys. 74 (1993) p. 3778–3782Google Scholar
25. Glew, R.W., Scarrott, K., Briggs, A. T. R., Smith, A. D., Wilkinson, V. A., Zhou, X., Silver, M., J. Crystal Growth, 145 (1994) p. 764770 Google Scholar
26. Fewster, P F, J. Appl. Cryst. 22 (1989) p. 64 Google Scholar
27. Fullerton, E. E., Pearson, J., Sowers, C. H., Bader, S.D., Wu, X. Z. and Sinha, S. K., Phys. Rev. B 48 (1995) p. 17432 Google Scholar
28. Sardela, M. R. Jr, and Hansson, G. V., J. Vac. Sci. Technol. A13 (1995) p314326 Google Scholar
29. Koppensteiner, E., Bauer, G., Kibbel, H. and Kasper, E., J. Appl. Phys. 76 (1994) p. 34893501 Google Scholar
30. Heinke, H., Moller, M. O., Hommel, D. and Landwehr, G., J. Cryst. Growth 135 (1994) p. 4152 Google Scholar
31. Fewster, P.F. in X-ray and Neutron Dynamical Diffraction Theory and applications edited by Authier, A., Lagomarsino, S., Tanner, B. K., Nato ASI series B Physics, Vol 357 (1996) (Plenum Press, New York) p269288 and p289–300.Google Scholar
32. Fewster, P. F., Appl. Phys. A. 58 (1994) 121127 Google Scholar
33. Kidd, P. and Fewster, P. F. in Mechanisms of Thin Film evolution edited by Yalisove, S. M., Thompson, C. V. and Eaglesham, D. J., MRS Symp. Proc. 317 (MRS Pittsburgh, 1994) p. 291296 Google Scholar
34. Kidd, P., Fewster, P. F. and Andrew, N. L., J. Phys. D 28 (1995) p. A133 Google Scholar
35. Fewster, P.F. and Andrew, N. L., J. Appl. Cryst. 26 (1993) p. 812819 Google Scholar
36. Fewster, P F, J. Appl. Cryst. 24 (1991) p. 178183 Google Scholar
37. Kidd, P., Dunstan, D. J., Colson, H. G., Lourenco, M. A., Sacedon, A., Gonzalez-Sanz, F., Gonzalez, L., Gonzalez, Y., Garcia, R., Gonzalez, D., Pacheco, F. J., Goodhew, P. J., J. Crystal Growth, 169 (1996) p. 649 - 659Google Scholar
38. Dunstan, D. J., Kidd, P., Beanland, R., Sacedon, A., Calleja, E., Gonzalez, L., Gonzalez, Y. and Pacheco, F. J., Materials Science and Technology 12 (1996) p. 181186 Google Scholar