Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T22:36:07.597Z Has data issue: false hasContentIssue false

High Temperature Oxidation Behavior of Al Added Mo / Mo5SiB2in-situ Composites

Published online by Cambridge University Press:  26 February 2011

Akira Yamauchi
Affiliation:
Institute for Material Research, Tohoku University, Sendai 980–8577, Japan
Kyousuke Yoshimi
Affiliation:
Institute for Material Research, Tohoku University, Sendai 980–8577, Japan
Shuji Hanada
Affiliation:
Institute for Material Research, Tohoku University, Sendai 980–8577, Japan
Get access

Abstract

Isothermal oxidation behavior of Mo/Mo5SiB2in-situ composites containing small amounts of Al was investigated under an Ar-20%O2 atmosphere in the temperature range of 1073–1673 K. The Mo/Mo5SiB2in-situ composites, (Mo-8.7mol%Si-17.4mol%B)100-xAlx (x=0, 1, 3, and 5mol%), were prepared by Ar arc-melting, and then homogenized at 2073 K for 24 h in an Ar-flow atmosphere. Without addition of Al, Mo/Mo5SiB2in-situ composite exhibits a rapid mass loss at the initial oxidation stage, followed by passive oxidation after the substrate is sealed with borosilicate glass in the temperature range of 1173–1473 K, whereas it exhibits a rapid mass gain around 1073 K. On the other hand, small Al additions, especially of 1 mol%, significantly improve the oxidation resistance of Mo/Mo5SiB2in-situ composites at temperatures from 1073–1573 K. The excellent oxidation resistance is considered to be due to the rapid formation of a continuous, dense scale of Al-Si-O complex oxides. The protective oxide scales contain crystalline oxides, and the amounts of the crystalline oxides obviously increase with Al concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vasudevan, A. K. and Petrovic, J. J., Mater. Sci. Eng. A155, 1 (1992).Google Scholar
2. Petrovic, J. J. and Vasudevan, A. K. in High Tempareture Silicides and Refractory Alloys, edited by Briant, C. L., Petrovic, J. J., Bewlay, B. P., Vasudevan, A. K., and Lipsitt, H. A., (Mater. Res. Soc. Proc. 322, Boston, MA, 1993) pp. 38.Google Scholar
3. Nunes, C. A., Sakidja, R., and Perepezko, J. H. in Structural Intermetallics 1997, edited by Nathal, M. V., Darolia, R., Liu, C. T., Martin, P. L., Miracle, D. B., Wagner, R., and Yamaguchi, M., (TMS, Champion, PA, 1997) pp. 831839.Google Scholar
4. Akinc, M., Meyer, M. K., Kramer, M. J., Thom, A. J., Huebsch, J. J. and Cook, B., Mater. Sci. Eng. A261, 16 (1999).Google Scholar
5. Natesan, K. and Deevi, S. C., Intermetallics 8, 1147 (2000).Google Scholar
6. Meyer, M. K., and Akinc, M., J. Am. Ceram. Soc. 79, 938 (1996).Google Scholar
7. Chu, F., Thoma, D. J., McClellan, K., Peralta, P., and He, Y., Intermetallics 7, 611 (1999).Google Scholar
8. Ito, K., Ihara, K., Tanaka, K., Fujikura, M., and Yamaguchi, M., Intermetallics 9, 591 (2001).Google Scholar
9. Ihara, K., Ito, K., Tanaka, K., and Yamaguchi, M., Mater. Sci. Eng. A329–331, 222 (2002).Google Scholar
10. Yoshimi, K., Nakatani, S., Suda, T., Hanada, S., and Habazaki, H., Intermetallics 10, 407 (2002).Google Scholar
11. Yoshimi, K., Nakatani, S., Nomura, N., and Hanada, S., Intermetallics 11, 787 (2003).Google Scholar
12. Yoshimi, K., Nakatani, S., Suda, T., Haraguchi, T., and Hanada, S., Materia Japan 41, 146 (2002) (in Japanese).Google Scholar
13. Yanagihara, K., Maruyama, T., and Nagata, K., Intermetallics 3, 243 (1995).Google Scholar
14. Yanagihara, K., Maruyama, T., and Nagata, K., Intermetallics 4, S133 (1996).Google Scholar