Article contents
High Temperature Thermoelectric Properies of LnPdX (Ln = lanthanide; X = Sb, Bi) Ternary Compounds
Published online by Cambridge University Press: 01 February 2011
Abstract
Ternary compounds LnPdX (Ln = lanthanide elements of La, Gd, Er; X = Sb, Bi) were prepared by a spark plasma sintering (SPS) technique. The crystal structure of LaPdSb and GdPdSb was confirmed to be a hexagonal ZrBeSi-type structure and different from the other compounds with a MgAgAs-type structure. The electrical resistivities ρ of LaPdSb and GdPdSb indicate the metallic or semimetallic characteristics, while those of ErPdSb and LnPdBi indicate semiconductor characteristics. From the ln ρ − 1/T plot, the band gap energies E g were estimated to be 0.28, 0.053, 0.081, and 0.049 eV for ErPdSb, LaPdBi, GdPdBi, and ErPdBi, respectively. All the samples have positive thermoelectric powers S above room temperature. The largest power factor S 2/ρ was obtained as 49.5 μW/K2 cm at 327 K for LaPdSb. From the Hall effect measurements on ErPdX, the carrier concentration n of ErPdSb and ErPdBi were obtained as 5.9×1018 and 3.21×1019 cm−3 at room temperature, respectively. It is considered that the difference of n at room temperature is mainly due to the magnitude of the band gap energy.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
REFERENCES
- 2
- Cited by