Published online by Cambridge University Press: 01 February 2011
Thin metal films deposited on elastomeric substrates can remain electrically conducting at tensile strains up to ~∼00%. We recently used finite-element simulation to explore the rupture process of a metal film on an elastomer. The simulation predicted the highest stretchability on stiff elastomeric substrates [1]. We now report experiments designed to verify this prediction. A ∼15-μm thick silicone elastomer layer with Young's modulus E ∼ 160 MPa is deposited on a 1mm thick membrane of polydimethylsiloxane (PDMS), a silicone elastomer with E ∼3 MPa. Metal stripes consisting of 25-nm thick gold (Au) film sandwiched between two 5-nm thick chromium (Cr) adhesion layers are fabricated either on top of the stiff layer spun onto the soft membrane substrate, or are encapsulated at the interface between the two elastomers. Encapsulated gold films remain electrically conducting beyond 40% strain. But conductors deposited on top of stiff elastomer lose conduction at strains of 3-8%. These results suggest that, in addition to the stiffness of the elastomeric substrate, the initial microstructure of the metal film plays a role in determining its stretchability.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.