Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T15:37:29.935Z Has data issue: false hasContentIssue false

HVPE-based orientation-patterned GaAs: added-value for non-linear applications.

Published online by Cambridge University Press:  01 February 2011

Faye D.
Affiliation:
THALES RESEARCH & TECHNOLOGY (TRT), Domaine de Corbeville, 91404 Orsay, FRANCE.
Lallier E.
Affiliation:
THALES RESEARCH & TECHNOLOGY (TRT), Domaine de Corbeville, 91404 Orsay, FRANCE.
Grisard A.
Affiliation:
THALES RESEARCH & TECHNOLOGY (TRT), Domaine de Corbeville, 91404 Orsay, FRANCE.
Gérard B.
Affiliation:
THALES RESEARCH & TECHNOLOGY (TRT), Domaine de Corbeville, 91404 Orsay, FRANCE.
Gil-Lafon E.
Affiliation:
LASMEA UMR CNRS 6602, Campus Universitaire des Cézeaux, 63177 Aubière, FRANCE.
Get access

Abstract

A new route is presented for the development of Orientation-Patterned Gallium Arsenide (OP-GaAs) for both guided and non-guided optical applications. The method is based on the use of the near-equilibrium growth process HVPE (Hydride Vapour Phase Epitaxy) that enables thick, high quality and orientation-preserving regrowth over dimensions fully compatible with targeted applications. The control of the growth anisotropy permits to preserve the original periodic arrangement of the initial template so that OP-GaAs substrates can be fabricated with pattern width and structure thickness ranging respectively from 1.8 to 110μm and 20 to 500μm. Such a large scope of dimensions appears useful either for bulk structures such as Optical Parametric Oscillators (OPO) or telecommunication applications. As an example, we suggest that combining this growth method with mechano-chemical polishing process could decrease propagation losses on AlGaAs waveguide structures for frequency conversion in telecom bands.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]: Bravetti, P., Fiore, A., Berger, V., Rosencher, E., Nagle, T., Gauthier-Lafaye, O., Opt.Lett. 23, 331 (1998).Google Scholar
[2]: Fiore, A., Janz, S., Delobel, L., Van Der Meer, P., Bravetti, P., Berger, V., Rosencher, E., Nagle, J., Appl. Phys. Lett. 72, 2942 (1998).Google Scholar
[3]: Becouarn, L., Gérard, B., Brévignon, M., Lehoux, J., Gourdel, Y. and Lallier, E., Elec. Lett. 34, 2409 (1998).Google Scholar
[4]: Yoo, S.J., Bhat, R., Caneau, C. and Koza, M.A., Appl. Phys. Lett. 66, 3410 (1995).Google Scholar
[5]: Yoo, S.J., Bhat, R., Caneau, C., Koza, M.A., Rajhel, A. and Antoniades, Neo, Appl. Phys. Lett. 68, 2609 (1996).Google Scholar
[6]: Ebert, C.B., Eyres, L.A., Fejer, M.M. and Harris, J.S. Jr, J. Crystal Growth 201, 187 (1999).Google Scholar
[7]: Eyres, L.A., Tourreau, P.J., Pinguet, T.J., Ebert, C.B., Harris, J.S., Fejer, M.M., Becouarn, L., Gérard, B. and Lallier, E., Appl. Phys. Lett. 79, 904 (2001).Google Scholar
[8]: Gil-Lafon, E., Napierala, J., Castelluci, D., Pimpinelli, A., Cadoret, R. and Gérard, B., J. Crystal Growth 222, 482 (2001).Google Scholar