Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T20:15:24.818Z Has data issue: false hasContentIssue false

A Hybrid Laser/Aerosol Method for the Synthesis of Porous Nanostructured Calcium Phosphate Materials for Bone Tissue Engineering Applications

Published online by Cambridge University Press:  01 February 2011

Shatoya Brown
Affiliation:
Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A.
Hyunbin Kim
Affiliation:
Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A.
Renato P. Camata
Affiliation:
Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A.
Get access

Abstract

We present a new synthesis method based on laser generation and processing of aerosol particles that can produce calcium phosphate coatings in a porous nanostructured configuration. The process uses laser ablation of crystalline hydroxyapatite targets to produce a calcium phosphate aerosol comprising micro- and nanoparticles that are processed and deposited on metallic substrates under well-controlled temperature and ambient conditions, creating a microporous calcium phosphate network suitable for growth of biogenic calcium phosphate materials. Laser ablation is carried out using a KrF excimer laser at fluences between 0.4 J/cm2 and 2.8 J/cm2 and temperatures ranging from 500°C to 760°C. X-ray diffraction and scanning electron microscopy measurements on samples deposited above 750°C show that the obtained material is crystalline hydroxyapatite with good mechanical stability. Its microstructure features a porous framework of partially sintered microparticles surrounded by nanoparticulate material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamada, Y., Ueda, M., Naiki, T., Takahashi, M., Hata, K.-I., and Nagasaka, T., Tissue Eng. 10, 955 (2004).Google Scholar
2. Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R. W., and Bizios, R., Biomaterials 21, 1803 (2000).Google Scholar
3. Webster, T. J. and Ejiofor, J. U., Biomaterials 25, 4731 (2004).Google Scholar
4. Price, R. L., Ellison, K., Haberstroh, K.M., Webster, T. J., J. Biomed. Mater. Res. 70, 129 (2004).Google Scholar
5. Kim, H., Vohra, Y. K., Louis, P. J., Lacefield, W. R., Lemons, J.E., and Camata, R. P., Key Eng. Mater. 284–286, 207 (2005).Google Scholar
6. Kim, H., Vohra, Y. K., Camata, R. P., and Lacefield, W. R., J. Mater. Sci. Mater. Med., in press. Google Scholar
7. Camata, R. P., Hirasawa, M., Okuyama, K., and Takeuchi, K., J. Aerosol Sci. 31, 391 (2000).Google Scholar
8. Makimura, T., Kunii, Y., and Murakami, K., Jpn. J. Appl. Phys. 35, 4780 (1996).Google Scholar
9. Kelly, R. and Miotello, A., “Mechanisms of pulsed laser sputtering,” Pulsed Laser Deposition of Thin Films, ed. Chrisey, D. B. and Hubler, G. K. (Wiley, 1994) pp. 5587.Google Scholar
10. Cheung, J.T., “History and fundamentals of pulsed laser deposition,” Pulsed Laser Deposition of Thin Films, ed. Chrisey, D. B. and Hubler, G. K. (Wiley, 1994) pp. 1415.Google Scholar
11. Nichols, W. T., Malyavanatham, G., Henneke, D. E., O'Brien, D.T., Becker, M.F., and Keto, J.W., J. Nanopart. Res. 4, 423 (2002).Google Scholar
12. Fernández de la Mora, J., Hering, S. V., Rao, N., and McMurry, P. H., J. Aerosol Sci. 21, 169 (1990).Google Scholar
13. Fuchs, N.A., Geofis. Pura Appl. 56, 185 (1963).Google Scholar
14. Seto, T., Nakamoto, T., Okuyama, K., Adachi, M., Kuga, Y., and Takeuchi, K., J. Aerosol Sci. 28, 193 (1997).Google Scholar
15. Seinfeld, J. H., “Atmospheric Chemistry and Physics of Air Pollution,” (Wiley, 1986).Google Scholar