Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:47:38.121Z Has data issue: false hasContentIssue false

Hybrid Organic-Inorganic Electrode-Membranes Based on Organo-Polysiloxane/Macrocycle Systems

Published online by Cambridge University Press:  10 February 2011

A. Jiménez-Morales
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain, jcarlos@icmm.csic.es Universidad Carlos III de Madrid, E-289 11 Legands, Spain
J.C. Galvan
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain, jcarlos@icmm.csic.es
P. Aránda
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain, jcarlos@icmm.csic.es
E. Ruiz-Hitzky
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain, jcarlos@icmm.csic.es
Get access

Abstract

Specific complexing agents for alkaline ions such as some crown-ethers of different intramolecular cavity size (12-crown-4, 15-crown-5 and 18-crown-6) are incorporated into a organo-polyorganosiloxane network generated via the sol-gel process. The resulting xerogels embody macrocycle compounds with different ion-selectivity. These xerogels are deposited onto porous supports (borosilicate, polyacrylonitrile,…) to obtain new composite electrode- membranes. The electrochemical characterization of the membranes and the electrode- membranes by electrochemical impedance spectroscopy (EIS) shows information about the reversible behavior and the ion resistance of the membranes, which are a function of both, nature and content of the entrapped macrocycle as well as the salt solution concentration. The electrochemical response of these systems acting as electrode-membranes shows their sensitivity towards different metal ions at variable concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brinker, C.J., Schereer, G.W. Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990 Google Scholar
2 Aznar, A., Sanz, J., Ruiz-Hitzky, E., Colloid Polym. Sci., 270, p. 165 (1992).10.1007/BF00652183Google Scholar
3 Hernrin, P., Pino, C. del, Ruiz-Hitzky, E., Chem. Mater. 4, p. 49 (1992).10.1021/cm00019a013Google Scholar
4 Galvdn, J.C., Aranda, P., Amarilla, J.M., Casal, B., Ruiz-Hitzky, E., J. Mater. Chem. 3, p. 687 (1993)10.1039/JM9930300687Google Scholar
5 Aranda, P., Jiménez-Morales, A., Galvdn, J.C., Casal, B., Ruiz-Hitzky, E., J. Mater. Chem. 5, p. 817(1995).10.1039/JM9950500817Google Scholar
6 Ruiz-Hitzky, E., Aranda, P., Casal, B., Galvdn, J.C., Adv. Mater. 7, p. 180 (1995).10.1002/adma.19950070218Google Scholar
7 Jimenez-Morales, A., Impedancia electroquimica de membranas organosilicicas dopadas con compuestos macrociclicos, (Ms. Thesis, Autóinoma University of Madrid, Madrid, Spain, 1993) p. 2224.Google Scholar
8 Boukamp, B.A., Equivalent Circuit (EQUIVCRT.PAS) Users Manual, 2nd edition., University of Twente, Report CT89/214/128, Enschede, Holland, 1989.Google Scholar