Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T21:44:51.507Z Has data issue: false hasContentIssue false

Hydrogen and Nitrogen Ambient Effects on Epitaxial Lateral Overgrowth (ELO) of GaN Via Metalorganic Vapor-Phase Epitaxy (MOVPE)

Published online by Cambridge University Press:  10 February 2011

Kazuyuki Tadatomo
Affiliation:
Mitsubishi Cable Industries, Ltd., Central Research Laboratory, Japan
Yoichiro Ohuchi
Affiliation:
Mitsubishi Cable Industries, Ltd., Central Research Laboratory, Japan
Hiroaki Okagawa
Affiliation:
Mitsubishi Cable Industries, Ltd., Central Research Laboratory, Japan
Hirotaka Itoh
Affiliation:
Mitsubishi Cable Industries, Ltd., Central Research Laboratory, Japan
Hideto Miyake
Affiliation:
Mitsubishi Cable Industries, Ltd., Central Research Laboratory, Japan Dept. of Electrical & Electronic Eng. Mie University, Japan
Kazumasa Hiramatsu
Affiliation:
Mitsubishi Cable Industries, Ltd., Central Research Laboratory, Japan Dept. of Electrical & Electronic Eng. Mie University, Japan
Hideto Miyake
Affiliation:
Dept. of Electrical & Electronic Eng. Mie University, Japan
Kazumasa Hiramatsu
Affiliation:
Dept. of Electrical & Electronic Eng. Mie University, Japan
Get access

Extract

Ambient gas effect on the epitaxial lateral overgrowth (ELO) of GaN via metalorganic vapor-phase epitaxy (MOVPE) on a MOVPE-grown GaN (0001) / sapphire (0001) substrate with a SiO2 stripe mask has been studied by means of field-emission scanning electron microscopy (SEM) and high-resolution X-ray diffraction (XRD) analysis. Different ambient gases of nitrogen, hydrogen and their mixture (mixture ratio, hydrogen: nitrogen = 1: 1) affect the lateral overgrowth rate, the surface morphology and the crystalline tilting of ELO-GaN layers. XRD revealed that the ELO-GaN layer on the SiO2 mask aligned along the <1100> direction exhibited anisotropic crystalline tilting toward <1120>. For ELO-GaN growth in nitrogen ambient, the growth rate of the (0001) facet decreases, the lateral overgrowth rate increases and the tilting of the ELO-GaN layer increases, while no smooth surface is obtained, in comparison with ELO-GaN growth in hydrogen ambient. For the mixture ambient, a smooth surface with a fast lateral overgrowth rate is achieved and the dislocation density is not more than 107 cm-2, which is comparable to that in hydrogen ambient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett. 64 (1994) 1687.Google Scholar
[2] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35 (1996) L74.Google Scholar
[3] Lester, S. D., Ponce, F. A., Craford, M. G. and Steigerwald, D. A., Appl. Phys. Lett. 66 (1995) 1249.Google Scholar
[41 Nakamura, S., Senoh, M., Nagahata, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M. and Chocho, K., Proc. 2nd Int. Conf. on Nitride Semicond. (Tokushima, 1997) 444.Google Scholar
[5] Kato, Y., Kitamura, S., Hiramatsu, K. and Sawaki, N., J. Crystal Growth 144 (1994) 133.Google Scholar
[6] Li, X., Jones, A. M., Rob, S. D., Turnbull, D. A., Reuter, E. E., Gu, S. Q., Bishop, S. G. and Coleman, J. J., Mat. Res. Soc. Symp. Proc. 395 (1996) 943.Google Scholar
[7] Usui, A., Sunakawa, H., Sakai, A. and Yamaguchi, A., Jpn. J. Appl. Phys. 36 (1997) L899.Google Scholar
[8] Zheleva, T. S., Nam, O.-H., Bremser, M. D. and Davis, R. F., Appl. Phys. Lett. 71 (1997) 2472.Google Scholar
[9] Nam, O.-H., Bremser, M. D., Zheleva, T. S. and Davis, R. F., Appl. Phys. Lett. 71 (1997) 2638.Google Scholar
[10] Kapolnek, D., Keller, S., Vetury, R., Underwood, R. D., Kozodoy, P., DenBaars, S. P. and Mishra, U. K., Appl. Phys. Lett. 71 (1997) 1204.Google Scholar
[11] Matsushima, H., Yamaguchi, M., Hiramatsu, K. and Sawaki, N., Proc. 2nd Int. Conf. on Nitride Semicond. (Tokushima, 1997) 492.Google Scholar
[12] Park, J., Grudowski, P. A., Eiting, C. J. and Dupuis, R. D., Appl. Phys. Lett. 73 (1998) 333.Google Scholar
[13] Beaumont, B., Gibart, P., Vaille, M., Haffouz, S., Nataf, G. and Bouille, A., Proc. 2nd Int. Conf. on Nitride Semicond. (Tokushima, 1997) 412.Google Scholar
[14] Hiarmatsu, K., Matsushima, H., Shibata, T., Sawaki, N., Tadatomo, K., Okagawa, H., Ohuchi, Y., Honda, Y. and Matsue, T., Mat. Res. Soc. Symp. 482 (1998) 257.Google Scholar
[15] Sakai, A., Sunakawa, H. and Usui, A., Appl. Phys. Lett. 73 (1998) 481.Google Scholar